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Abstract

INVESTIGATIONS OF BRAID GROUP ALGORITHMS
by

John P. Najarian 
Adviser: Professor Michael Anshel

The classical Artin algorithm for the word problem 
for braid groups is shown to have an exponential space 
and exponential time worst case. Monte Carlo 
experiments and enumerations show that the average case 
is non-linear (but appears to be a low order 
polynomial) for Artin's algorithm. Trends and patterns 
are analyzed.

Garside's algorithm for the word problem is then 
analyzed with respect to average-' and worst cases. 
Statistical evidence shows that the classical Garside 
algorithm has exponential space growth with respect to 
the number of braid strands. For braids with more than 
six strands, this algorithm easily exceeds the storage 
capacity of the present generation of mainframe 
computers. Many interesting properties are proven 
about the word diagrams of Garside's algorithm.
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A variant of Garside1s algorithm is proven to 
operate in non-deterministic linear space on a Turing 
Machine in the average and worst cases. In 
deterministic form, this algorithm requires at most 
quadratic space on a Turing Machine.

The Burau representation is used to construct 
other algorithms. A complexity-theoretic line of 
attack for the famous faithfulness conjecture of the 
Burau representation is demonstrated. The word problem 
for B(3) is proven to require logspace.

A variant of the Luginbuhl combing algorithm is 
designed for solving the word problem for braid groups. 
A brief analysis of it follows.

A new algorithm is designed for-nearly solving the 
word problem for braid groups. This algorithm operates 
in log-space for all B(n) but it accepts some rare 
non-identity braids. Some counterexamples are shown.

The word problem for B(3) can be solved in linear 
time but with .linear space usage.
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I .0 Preliminaries

I.A Group Theoretic Concepts

Here we define a group in terms of generators and 
defining relators. A presentation P is a pair <A ; R> 
such that:

A is a set of generating symbols a[i] and their 
uniquely associated inverses (denoted a[i]'.)

R is a set of finite words (called defining 
relators) formed by elements of A.

The inverse of a word w=a[l]a[2]...,a[i]..a[k] 
(where a[i] is an element of A) is a word 
w'=a[k]l...a[i]'...a[2],a[l]1. We observe that 
a[i),l=a[i). Implicitly assumed in R (but rarely 
written) are a. set of relators g'g and gg' (called free 
relators), for every generator g. Under a presentation 
P and given two words u and v (from alphabet A), we say

1
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u is reducible to v iff u can be transformed into v 
after a finite sequence of insertions or deletions of 
relators and their inverses. The group. G being 
represented has as its elements, the equivalence 
classes of words (from alphabet A) under the 
reducibility equivalence relation. Concatenation of 
representatives is the group operation. A complete
discussion of groups expressed in terms of generators

\
and defining relators can be found in Magnus, Karrass, 
and Solitar[1966].

The algebraic braid group was introduced by 
Artin[1925]. The braid group B(n+1) is the group 
corresponding to the presentation <s(l),s(2),...,s(n) ;

s(i)'s(i) = s(i)s(i)' = 1
s(i)s(j) = s(j)s(i) iff | i - j | > l
s(i)s(i+l)s(i) = s(i+l)s(i)s(i+l) for all i,j. >

For alternate interpretations of B(n+1) as a 
topological structure, refer to Birman[1975], 
Magnus[1974], Stillwell[1980], or Moran[1984].

2
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A group of whose presentation has only free 
relators and n generating symbols is called a free 
group of rank n (denoted F(n) ,.)

The fundamental algorithmic problem of ' group
theory, the word problem, was defined and investigated 
by Dehn[1911].

The word problem for a group G (denoted WP(G)),
given in terms of generators and defining relators, is 
the problem of determining if a word w in the
generators can be reduced (ie. transformed by 
insertion and deletion of relators and their inverses) 
to the identity word. The set of such words which
reduce to the identity word is called the group
language of G (denoted GLA(G)) under that presentation.

It will be convenient to describe the group
language of the free abelian group on one generator as 
LEQ., which is the language composed of all words w
(from alphabet {0,1}) such that the number of zeros 
equals the number of ones.)

3
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We remark that GLA(F(n)) have been investigated as 
the two-sided Dyck languages on n letters (ref. 
Harrison[1978], page 312-325.)

By the growth rate of a language, we mean the 
function f(m) whose value denotes the number of words 
of length m which are reducible to the identity element 
(under the given presentation.)

I.B Turing Machines and Complexity Concepts

The Turing Machine serves as a useful modei of 
computation in that it use allows us to measure space 
and time utilization (ie. the computational 
complexity) of algorithms and, more abstractly, of 
problems. Storage space in our .model of Turing 
Machines consists of a read-only input tape (containing 
the input data), an output (generally 2-valued), and a 
number of work tapes (for intermediate computations.) 
Each tape can only be accessed through a head which can 
read and write from one cell on that tape at any 
moment. In that moment, the head can move left one 
cell or move right one cell or stand still. This so 
far describes the storage and access method; the exact

4
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formal control system of a Turing Machine is described 
below.

A Turing Machine T is an octuple 

T=<Q,I,W,0,D,NS,qO,qF> such that:

i. Q is a set of states

ii. I is a set of input symbols

iii. W is a set of work tape symbols

iv. 0 is a set of output symbols {T, F}

v. D is a set of directions in which to
move a head {L,R,S}

vi. NS is a next move function
NS: QxIxW — > QxDxWxD

vii. qO in Q is the start state

viii. qF is the final state

5
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By the finite control of a Turing Machine T, we 
mean the function NS(q,i,w) which characterizes the 
rules of computation specific to T, expressing the 
algorithm by which T will operate.) The finite control 
can not be modified at execution time? likewise, it is 
generally not treated as a computational resource.

The Turing Machine starts in state qO, with
input-tape-head pointing to the left boundary of the 
input, which is on the input tape. The work tape
generally starts with blank symbols (denoted B) and the 
work-tape-head points to it.

The NS function (based on those of Hopcroft and 
Ullman[1968]) is generally described as a set of
function values. For instance, NS(q,i,w)=<q2,di,w2,dw> 
signifies: if the Turing Machine is in state q and the
input-tape-head points to symbol i (on the input tape) 
and the work-tape-head points to symbol w, then have 
the Turing Machine enter state q2, with i2, move
input-tape-head one cell in direction di, replace the 
value of the wprk cell (ie. the cell pointed to by the 
work-tape-head) with w2, and move work-tape-head one 
cell in direction dw. This process is repeated until

6
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the machine enters a final state. In a step before 
entering the final state, the output (ie. T or F) is 
placed on the work tape. T stands for true, F for 
false, L for "move left", R for "move right", and S for 
"stay still". The work and tape heads move 
independently. .

Below is a diagram of this machine model:

Input Tape 1 B | input | B | B | B
A

// input-tape-headI I
| finite | 
j control ji i

1
1
1

1 11------- \ work-tape-head
\V

Work Tape 1 B | work data | B | B | B

An example of a Turing Machine for determining if 
string l**k has even length is:

TPAR=<{qO,ql,qF}, {1,B}, {B}, {T,F}, {L,R,S}, NS,qO,qF> 
such that.function NS is defined by:

NS ( qO, B , B ) -  < qF , s , T , S >
NS ( qO, 1 , B ) = < qi / R / B , S >
NS ( qi/ B , B ) = < qF , s , F , s >
NS ( qi/ 1 / B ) = < qO , R / B , s >

7



www.manaraa.com

Preliminaries

Occasionally, we will use a natural programming 
language for Turing machines in the manner of 
Domanski[1982], as well as the octuple model given.

An alternate model of this Turing machine is the 
two-input-head Turing Machine. Formally, a
two-input-head Turing machine is a Turing Machine T2 
with the following octuple structure:

T2=<Q,I2,W,O,D,NS2,q0,qF> such that:
12 = Ixl where:
I is a set of input symbols
NS2 is a next move function

NS2: QXI2XW — > QxD2xWxD
D2 = DxD where:
D is a set of directions in which to 

move a head {L,R,S>

and all other terms correspond to those of the 
single input head model.

The main difference between T2 and T is that T2 
has two independently moving input heads. Each 
execution of the next move function NS2 is determined 
by the machine state, the work tape cell, and the two 
input cells being scan by the two input heads (ie. 
corresponds to 12.) The execution of the NS2 function
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then results in the motion of both input heads in 
independent directions (ie. D2's role), as well as the 
standard Turing Machine operation on the work tape and 
next state.

Below is a diagram of the two input head machine 
model:

Input Tape | B | input | B | B | B
A A

/  I/ | input-tape-heads
//

\ work-tape-head
\ v

Work Tape | B | work data | B | B | B

Turing Machines which restrict input tape heads to 
move only in one direction are called on-line; 
otherwise, they are called off-line. For example, 
Turing Machine TPAR is on-line. Since input tapes can 
only be read, the space utilization of a machine is 
determined by the amount of work tape (ie. number of

finite
control
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work tape cells) used during the execution of that 
algorithm. Time utilization can respectively be 
defined as the amount of time required (expressed as 
the number of instructions 'executed or moments spent) 
to complete the execution of that algorithm. Both 
space and time complexity measures can be expressed as 
functions of the input length (or more broadly, the 
problem instance.) Furthermore, both measures can be 
qualified in terms of average utilization (ie. the 
resource utilization of an arbitrary case) and worst 
case utilization (ie. the case of maximal resource 
use.) Problems and algorithms are called f(m)-space (or 
f(m)-time) solvable iff their respective complexity 
measures can be expressed as (or bounded by) a linear 
function of f(m) where m is the length of the input (or 
problem instance.) For example, a problem is log-space 
solvable iff its space complexity is k*log(m) where k 
is a constant. Turing machines which exactly require 
time complexity m are said to operated in real time. 
Other types of Turing Machines and their complexity 
aspects are covered in Harrison[1978].

1.0
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The notation in this section was conceived out of 
the graphic constraints of the computer used. This has 
resulted in cumbersome adaptation for notation. x**y 
denotes exponential function x raised to the power y.

11
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I.C Bounds on the Complexity of the Word Problem
for Braid Groups

Sometimes properties can be proven about groups 
directly from the structure of the relators. In the 
case of the braid group B(n+1), the following theorems 
arise in such a manner.

Proposition 1: If w is a word in the braid group
language GLA(B(n+l)), then the number of occurrences of 
inverse generators in w must be equal to the number of 
occurrences of positive generators in w.

Proof; All relators are of one of the following 
forms:

a 1 a , aa' , abab'a'b' , a'c'ac ..

Starting with the trivial word (which obviously 
has as many inverse generators as positive generators), 
any insertion or deletion of relators will preserve the 
equality in number.

(QED)

12
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Proposition 2: If w is a word in the braid group
language GLA(B(n+l)), then w must be of even length.

Proof; By proposition 1, for a word to be 
trivial, it must have k inverted generators if it has k 
positive generators. So it has length 2k, hence even.

As an alternate proof, note that the relators are 
all of even length. Any insertion or deletion of them 
will conserve parity.

(QED)

Proposition 2 may seem weak relative to the 
Proposition 1; however, it is extremely useful in 
trivial-braid enumerations because it can skip a whole 
length category in the enumeration. Proposition 1 
can't cause such clean jumps (unless much programming 
machinery is added, which will still prove very costly 
(in time complexity) without this proposition as a 
first programming construct.)

The recognition problem for LEQ is the problem of 
determining if an arbitrary word (composed of 0's and 
l's) is in the language LEQ.

13
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Lemma 1; The recognition problem for LEQ:
i. is solvable on an on-line Turing Machine.
11. requires at least log-space in (the worst 

case) on an on-line single-input-head 
Turing Machine. .

Proof: First, we need to show that a single head
on-line Turing Machine can solve this problem in 
log-space. The proof is by construction.

/* TM-input-head starts at leftmost on input tape */
/* The work tape will be treated as a COUNTER. */

Put a ' + ' on the work tape as initial COUNTER ;
Loop Until ( TM-input-head points to right-end) ;

If (TM-input-head points to * 1•)
Then CALL INCREMENT( COUNTER) ; /* by 1 */
Else CALL DECREMENT( COUNTER) ; /* by 1 */

. Move TM-input-head to right one step;
End Loop;

If (COUNTER = 0)
Then Print 'Word is in LEQ.';
Else Print 'Word is not in LEQ.';

14
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Halt ?

For sake of completeness, the Increment and
Decrement Functions can be implemented as shown below. 
These functions only increment and decrement the
COUNTER (on the work tape) by one. Note that these
functions are a simple but have complex Turing machine 
representations because the COUNTER is represented by 
an absolute value of a count, followed by a sign
character (ie. + or -.)

/* TM-work-head starts at rightmost on input tape */
/* The work tape (called COUNTER) will start off */
/* as a string of zeroes, enclosed in B's. */

/* Increment by 1 Case */
If (Input-head points to '11

. and COUNTER sign is negative)
Then If (COUNTER=0)

Then do;
Change sign of COUNTER to positive? 
C0UNTER=1;
RETURN to main program?

15
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end;
Else do;

CALL DECREMENT(COUNTER);
RETURN to main program; 
end;

Else;
Loop Until ( TM-work-head points to 10') ;

If (TM-work-head points to '1')
Then Replace '1' by 'O1;
Move TM-work-head to left one step;

End Loop;
Replace '0' by '1';
Move TM-work-head to right until end-marker; 
/* End of Increment by 1 Case

/* Decrement by 1 Case 
If (Input-head points to 'O'

and COUNTER sign is negative)
Then If (COUNTER=0)

Then do;
Change sign of COUNTER to negative 
COUNTER=-l;
RETURN to main program;
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Else do;
CALL INCREMENT(COUNTER);
RETURN to main program; 
end;

Else;
Loop Until ( TM-work-head points to '1') ;

If (TM-work-head points to '01)
Then Replace '01 by 11';
Move TM-work-head to left one step;

End Loop;
Replace 11' by '01;
Move TM-work-head to right until end-marker;
/* End of Decrement by 1 Case */

/* Counting done in binary. */

For the sake of rigorous formality, the above 
algorithm corresponds exactly to the following Turing 
Machine;

T=<Q,I,W ,0,D ,NS,qO,qF> such that:
Q ={qO,gl,qtest,qtestA,qnotO,qeqO,qdec,qinc,qmove,qF} 
I = { 0 , 1 , B ) where B signifies blank

17
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W = { 0 , 1 , B ,  + , -  }
0 = {T, F)
D = {L,R,S}
qO in Q is the start state 
qF is the final state
NS is a next move function (given below)

NS ( qO, 1 , B = < qi » s , + / s >

NS( qo, 0 , B = < qi / s , + / s >

NS ( qi» 1 , + = < qinc , S / + / L >
NS ( qi» 0 , + = < qtestA , S / + 1 L >

NS ( qi/ B , + = < qtest , s ! + # L >

NS ( qif B ' “ = < qtest , s t - 1 L >

CO55 qi/ 1 , " =  < qtestA , s / - t L >

NS ( qi/ o , - =  < qinc , s / - / L >

NS ( qtest, B , 0 ) == < qtest 1 s t 0 / L >

NS ( qtest, B , 1 ) == < qF t s / F / S >

NS ( qtest, B , B ) == < qF I s / T / S >

Comment: Below are the increment-decrement routines.
0 ) = < qtestA , s , 0 , L >
0 ) = < qtestA , s , 0 , L >
1 ) = < qnotO , s , 1 , R >
1 ) = < qnotO , s , 1 , R >
B ) = < qeqO / s , B , R >

18
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NS
NS
NS
NS
NS
NS
NS

< geqOqtestA, 1 , B ) = 
qnotO, 0 , 0 ) =  
qnotO, 0 , 1 ) =  
qnotO, 1 , 0 ) =  
qnotO, 1 , 1 ) = < qnotO , S 
qnotO, 0 ,. + ) = < qdec , S 
qnotO, ! , - ) = <  qdec , S

, S , B , R >
< qnotO , S , 0 , R >
< qnotO , S , 1 , R >
< qnotO , S , 0 , R >

, 1 , R >
. + L >

L >
NS ( qeqO, 0 0 = < qeqO , S 0 R >
NS ( qeqO, 0 1 = < qeqo , S 1 R >
NS ( qeqO, 1 0 = < qeqO , s 0 R >
NS ( qeqO, 1 1 = < qeqO , s 1 R >
NS ( qeqO, 0 + = < qinc , s - L >
NS ( qeqO, 1 - = < qinc , s + L >
NS ( qdec, 0 0 = < qdec , s 1 L >
NS ( qdec, 1 0 = < qdec , s 1 L >
NS ( qdec, 0 1 = < qmove, s 0 L >
NS ( qdec, 1 1 = < qmove, s 0 L >
NS ( qinc, 0 B = < qmove, s 1 R >
NS ( qinc, 1 B = < qmove, s 1 R >
NS ( qinc, 0 0 = < qmove, s 1 R >
NS ( qinc, 1 0 = < qmove, s 1 R >
NS ( qinc, 0 1 = < qinc , s 0 L >
NS ( qinc, 1 1 = < qinc , s 0 L >
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NS ( qmove, 0 / — s < ql / L i CO V

NS ( qmove, 0 t + = < ql , L , + , S >
NS ( qmove, 1 / - = < ql , L , - , S >
NS ( qmove, 1 / + = < ql , L , + , S >
NS ( qmove, 0 f 0 = < qmove , S , 0 , R >
NS ( qmove, 0 i 1 < qmove , S , 1 , R >
NS ( qmove, 1 / 0 = < qmove , S , 0 , R >
NS ( qmove, 1 / 1 = < qmove , S , 1 , R >
End-of-TM.

To demonstrate the operation of this 
Machine, a simulation of its behavior (as 
follows:

Turing
trace)
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Trace of Turing Machine behavior on input 1110.
Input Tape State Work Tape
v v
1 1 1 0  q0 B B B B B B B
V V
1 1 1 0  ql B B B B + B B
V V
1 1 1 0  qinc B B B B + B B
v v
1 1 1 0  qmove B B B 1 + B B

V
1 0  ql B B B 1 + B B

V
1 0 qinc B B B 1 + B B

v
1 0 qinc B B B 0 + B B

v
1 0 qmove B B 1 0 + B B

v
1 0 qmove B B 1 0 + B B
v v

11. 1 0  ql B B 1 0  + B B
V V

1 1 1 0  qinc B B 1 0 + B B
V  . V

1 1 1 0  qmove B B 1 1 + B B
v v

1 1 1 0  ql B B 1 1 + B B
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v v
1 1 1 0  qtestA B B 1 1 + B B

v v
1 1 1 0  qnotO B B 1 1 + B B

v v
1 1 1 0  qdec B B 1 1 + B B

V v
1 1 1 0  • qmove B B 1 0 + B B

v v
1 1 1 0 B  ql B B 1 0 + B B

V v
1 1 1 0 B qtest B B 1 0 + B B

v v
1 1 1 0 B qtest B B 1 0 + B B

V  V
1 1 1 0 B  qF B B F O  + B B
Machine halts in final state qF.
Output symbol F signifies 1110 is not in LEQ.

Informal Argument of Lemma 1 (for On-line Case);

Informally, in the above Turing Machine, COUNTER 
requires log(m) space at worst where m is the length of 
the input string. This corresponds to the string l**m. 
Note: 1**(m/2)0**(m/2) is the worst case of the
accepted words. The proof is essentially reducing the 
recognition problem by the Turing Machine to a counter
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principle.

The argument begins by showing log(j) space is the 
minimum space possible to record numbers 0 through j. 
Since the input string is scanned on-line, when the 
input head has passed over any prefix l**(k), it must 
be capable recording the exact number of ones, namely 
k. Otherwise, if it did not have the capacity to 
distinguish between every k (where 0<k<m), then there 
would be two distinct values k and kl such that for 
every word w :

(l**k)w would be in LEQ iff (l**kl)w is in LEQ 
This would clearly violate the definition of LEQ 
because w would have COUNTER values of -k and -kl 
simultaneously, which is clearly a contradiction. 
Hence, the on-line Turing Machine must be capable of 
counting upto m exactly.

Note: the contradiction condition would also have
serious ramifications on the context-free nature of 
(l**k)(0**k).
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Formal Proof of Lemma 1 for On-line Case:

Sublemma: On-line counting of a string l**j
requires log(j) space on a single-head on-line Turing 
Machine.

Proof of Sublemma: Assume a k-symbol alphabet for
the work-space of such a Turing Machine. Assume X 
cells exist on that work tape. By definition, each

s

cell can hold exactly one symbol.

The question arises: How many symbol patterns can
be stored in X cells? From combinatorial theory (ref. 
Liu[1968]), k**X patterns can be stored. So in X 
cells, at most k**X different numbers can be stored. 
If we use integer 0 and require counting by one (a 
strict successor function constraint), then we can only 
represent numbers from 0 to k**X-l. Let i=k**X. Then 
we are saying, to count from 0 to i, we need log(i) 
cells. To count a sequence of j ones on a Turing 
Machine, we need log(j) space. The above log functions 
are in base k.
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Note: In changing the base of counting (ie. from
k to k'), we have log-sub-k'(j) =
log-sub-k(j)/log-sub-k(k'), so this is really just 
dividing by a constant factor; hence, logspace 
remains.

(QED to Sublemma)

So far, we have shown that log(j) space is needed 
to count from 0 to j (with no gaps.) All that remains 
is to show that the count (j) must be as large as m.

So, in our on-line Turing Machine for 
1**(m/2)0**(m/2), as the head sweeps over l**(m/2), it 
must use:

log(m/2)=log(m)-log(2)=0(log(m)). space. By the 
above lemma, to have the correct count of ones, 
log-space is absolutely required. Any fewer cells 
would not be capable of recording this count. After 
the midpoint (of 1**(m/2)0**(m/2)) is past, the 
countdown would not cause any further growth. Note: 
for the l**m case, the space requirement would be again 
O(log(m).)
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This count information is necessary because if at 
any point in the input scan (say when l**k has been 
passed over by the input) we should happen to lose any 
count information, then the final output for the Turing 
Machine would be the same for (l**k)w as (l**k2)w 
(where w is any word and k not equal to k2.) So any 
loss of count information would result in erroneous 
outputs.

QED to Lemma 1 On-line Case

Theorem 1: The word problem for braid groups
requires at least log-space (in the worst case) on an 
on-line single-input-head Turing Machine.

Proof: Using the necessary condition (of
Proposition 1), we can look at the problem in terms of 
the language LEQ, the language composed of all words w 
(from alphabet (0,1)) such that the number of zeros 
equals the number of ones. Clearly, any.Turing Machine 
can interpret a braid word in terms of LEQ words (under 
the mapping s(i)— >1 and s(i)'— >0, where s(i) is a 
positive braid generator) and furthermore, this 
interpretation can be done in the finite store of any 
Turing Machine model. So now a necessary condition for
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the word problem for braid groups reduces to the 
recognition problem for LEQ. Since LEQ is recognizable 
on an on-line single head Turing Machine in log-space, 
the word problem for braid groups requires at least 
log-space in the worst case (on that model.)

QED to Theorem 1 On-line Case

Discussion:

For a single-head off-line Turing- Machine, the 
situation appears to be similar in terms of the 
worst-case. Counting can occur upto a certain value. 
By the time that the midpoint is reached, a count of 
the traversed side must be made. Assume we did not 
count all of the ones but every kth one (k a constant) 
in this one pass; then the space will be 
O(log(m/k))=0(log(m).) Assume each pass counted k**i 
where i is the pass number; then, for large k**i (ie. 
close to m/2), the remainder in such a count would 
require O(log(k**i)) which would be 0(log(m/2).) If we 
left that remainder for further counting by smaller 
chunks (say k**p where p<i), then to record the address 
of that position where the remainder begins requires 
log-space.
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Unfortunately, all this proves is that standard 
counting methods would fail to use less than log-space 
on an off-line Turing Machine for the worst case ; 
however, instead of k**i, there could possibly exist 
other functions f(i) which, after many successive 
passes, would cover all counts from 0 through m/2 (by a 
conjunction of cases) and yet use less than log-space. 
Such a system would very likely be nonoptimal in time 
usage, moving the input head over sufficient scans to 
collect sufficient partial results. No such class of 
functions seems to exist and there is much intuitive 
evidence of its' nonexistence but this remains to be 
proven.

For the average space complexity of the on-line 
single-head Turing Machine model, ' the situation has 
been analytically solved (below) but the exact function 
has not been resolved in terms of its' big-0 class. 
Let w be an arbitrary word of length m over alphabet 
(0,1). Let SP(w) = the maximal space used by word w on 
the work-tape (which is just a counter.) SP(w) is 
really the least integer greater than the log of the 
counter value at it’s maximal point in the program run. 
For example, SP(1011011110000)= log-sub2(5) = 3. Let
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r=the value of the counter in the maximal step (ie. 
r=2**SP(w).) The average case space usage of this 
system can be computed by an expected value:

Average Space = ^  SP(w)*Probability(w being the word)
.over
all words w

The maximal counter value r may be interpreted as 
the maximal value of the sequential sum of m 
independent binomial random variables (values +1 and 
-1). In other words, r is the maximum value of the 
random walk of length m. The probability that such a 
sum of length m would have a maximal value of r is: 

Prob(m,r) = C(m,(m+r)/2)*2**(-m)
(according to Feller[1968], p74-75,87-89 or
Renyi[1970], p233.)

At this point, the problem adopts a new twist; if 
the situation was as simple as presented so far, the 
sum may be repartitioned as follows:

r=m
Average Space = ^  log(|r|) * C(m,(m+r)/2)*2**(-m)
(for words r=-m
of length m)
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This classical random walk approach cannot be used 
directly because a maximal value of r could still 
result in a negative count below -r (resulting in 
underestimation of space usage.) Instead, the problem 
should be reformulated in terms of the absolute value 
of the random walk. Let the probability that the 
absolute value of such a sum (ie. random walk) of 
length m (ie. m steps) would have a maximal value of r 
be denoted as PA(m,r). With the absolute value 
condition, the expected value becomes:

r=m
Average Space = ^5" log(|r|) * PA(m,r).
(for words r=0
of length m)

Clearly, PA(m,0)=0, so the sum can be assumed to begin 
at r=l. Also the log(|r|) is really the least integer 
greater than log(|r j).

At this point, we could compute the exact value of 
PA(m,r) by a very lengthy derivation starting with the 
fundamental assumptions of random walks and adding 
conditions. For sake of brevity, this approach will be 
avoided. Another method, based on taking differences
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Prob (m,r)-Prob (m, r-1) seems semantically correct at 
first but is erroneous because it neglects to consider 
the cases of negative sums that go below r and r-1 
respectively. . These negative cases are not 
equiprobable in the r and r-1 case. Therefore, this 
difference approach fails (as did all the other tested 
reformulations in terms of Prob.)

One alternative is to approximate, of course 
keeping track of whether the approximation is an 
over-estimate or under-estimate. We know that 
Prob(m,r) is greater than or equal to PA(m,r) because 
Prob is unbounded for negative r while PA is. So we 
can approximate the expected value in terms of 
Prob(m,r) as:

r=m
Average Space < 2* log(|r|) * C(m,(m+r)/2)*2**(-m)
(for words r=l
of length m)

No simple method of resolving this to be 
non-logspace has been found. Program runs show this is 
sub-0(log(m)) but a direct proof via series 
manipulation is not obvious.
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Instead, using an approximation (due to Renyi page
234) :

Probability(Maximum >=r) =< 2e**((-r**2)/ (2m)).
V

As r grows, this function decreases exponentially. 
By substitution into the average space inequality, the 
average space of the single-head on-line Turing Machine 
(for LEQ) can be shown to be less than log(m)-space. 
Exactly what function it is has not been determined 
yet.

For the average space complexity of the off-line 
single-head Turing Machine, this issue remains open by 
the same arguments of the worst case for the off-line 
model (described above.) The issue is: can large
numbers of repeated scans collect enough fragmentary 
information to completely determine membership in LEQ 
and yet use less than log-space in each pass.

Lemma 2: The necessary condition for WP(B(n+l))
in theorem 1 requires no work-tape space on a 
2-input-head Turing Machine (even with the on-line 
condition.)

32



www.manaraa.com

Preliminaries

Proof: Proof by construction of an on-line
2-input-head Turing Machine which requires no workspace 
and can still recognize LEQ.

/* TM-input-heads starts at leftmost on input tape*/

Loop Forever;
If (TM-input-headl points to right-end)
Then

/* Need to test if an excess of zeros.*/
Loop Until (TM-input-head2 points to '0'); 

If (TM-input-head2 points to right-end) 
Then

Print 1Word is in LEQ.1;
Halt;

End-if;
Move TM-input-head2 right once; 

End-loop-until;
/* Have at least one excess zero. */
Print 'Word is not in LEQ.1;
Halt;

End-if;
If (TM-input-headi points to '0')
Then ; /* Headl ignores input='0' */
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Else
/*Since Headl hits a '1', Head2 must */ 
/* find a 'O'. */
Loop Until (TM-input-head2 points to '0');

If (TM-input-head2 points to right-end) 
Then

Print 'Word is not in LEQ.';
Halt;

End-if;
Move TM-input-head2 right once; 

End-loop-until;
/* Since head2 hit a 'O', all is ok. */
/* To prevent double counting, move again.*/ 
Move TM-input-head2 right once;

End-if;
Move TM-input-head to right one step;

End Loop-Forever;

For the sake of rigorous formality, the above 
algorithm corresponds exactly to the following Turing 
Machine:
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T=<Q,I2,W,O,D,NS2,q0,qF> such that:
Q = {qO , qfindl , qfindO , qF}
12 = Ixl where:
I = { 0 , 1 , B } where B signifies blank 
W = { B } '
0 = {T,F}
D = {L,R,S}
qO in Q is the start state 
qF is the final state

NS2 is a next move function (given below)
NS2 ( qo. <B B> r B = < qF / <s, S> t T
NS2 ( qO, <1 1> • = < qfindO / <s, R> / B
NS2( qO, <0 1> ,B = < qO i <R, R> / B
NS2 ( qO, <1 0> /•B = < q° 9 <R, R> f B
NS2 ( qO, <0 0> r B = < qfindl 9 <R, S> / B

NS2 ( qO, <0 B> , B ) = < qO A CO V B , S>
NS2 ( qO, <B 0> r B ) = < qF , <S, S> , F , s>
NS2 ( qO, <1 B> t B ) = < qF , <S, S> , F , s>
NS2 ( qO, <B 1> , B ) = < qO , <S, R> , B , s>

NS2 ( qfindO, <1 , 1>,B ) = < qfindO, <S , R> /
NS2 ( qfindO, <1 / 0>,B ) = < qO , <R , R> /

NS2 ( qfindO, <1 / B>,B ) = < qF , <S 
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NS2( qfindl, <0 , 0>,B ) = < qfindl, <R, S> , B, S> 
NS2( qfindl, <1 , 0>,B ) = < qO , <R, R> , B, S>
NS2( qfindl, <B , 0>,B ) = < qF , <S, S> , F, S>

The following example will demonstrate the 
behavior of this Turing Machine.
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Trace of Turing Machine behavior on input 110100. 
(Note: A is head 1 and v is head 2.)
Input Tape State Work Tape
v
1 1 0 1 0 0  qO B
A A

V
1 1 0  1 0  0 qfindO B
A A

V
1 1 0  1 0  0 qfindO B
A A

V
1 1 0 1 0 0  q0 B

A A

V
1 1 0  1 0  0 qfindO B

A A

V
1 1 0 1 0 0  qO B

A A

V
1 1 0  1 0  0 qfindl B

A A

V
1 1 0 1 0 0 B  qO B

A A

V
1 1 0 1 0 0 B  qO B

A A

V
37
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1 1 0 1 0 0 B  qF T
A A

Machine halts in final state qF.
Output symbol T signifies 110100 is in LEQ.

(QED to Lemma 2)

Obviously, the average work-space usage of the 
2-head Turing Machine is zero. So, this lowerbound is 
not a very useful one.

Note: The analysis of the 2-input-head approach
does have one hidden flaw. In the real world, a head 
(or a pointer) requires log(memory used) space to 
record the position of an average cell. The assumption 
that the lower bound due to theorem 1 fails because of 
the addition of another head is not a real one; the 
extra head requires logspace on any real machine.

Previous work on random walks over groups was 
carried out by Kesten[1959]. His research was directed 
toward the recurrence problem for the identity, 
subgroups, and other events in random walks over 
groups. His methodology was more probabilistic than

38



www.manaraa.com

Preliminaries

combinatorial. Later results in the countably infinite 
Abelian case were developed by Kesten and 
Spitzer[1965]. Our approach is more combinatorial and 
concentrates on the maximal distances in random walks, 
with an ultimate goal in the complexity issues. 
Spitzer[1976] presented a theoretical but introductory 
approach to random walks.

I.D The Growth Rate of the Braid Group Languages

The previous theorems establish an upper bound 
result.

Lemma 3t There are at most C(m,m/2)*(n**m) 
identity braid words of length m in B(n+1).

Proof: By proposition 2, m/2 generators will be
inverted (in an identity braid word of length m.) There 
are C(m,m/2) ways to chose which m/2 positions will be 
the inverted. Once inversion positions are selected, 
the remainder of the problem is: how many ways can m
positions be filled (with replacements) using the (n) 
generators. There are (n**m) selections. Hence, 
C(m,m/2)* (n**m).
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(QED to Lemma 3)

The above lemma demonstrates an upper bound on the 
set, not an exact value. Using this value, the 
probability of a word being an identity word is

PR(m,n) = C(m,m/2)* (n**m) / ((2*n)**m)

where (2*n)**m is the total number of braid words 
of length m. The expression reduces to:

PR(m,n) = C(m,m/2) / (2**m)

A binomial expansion of 2**m contains C(m,m/2) as 
the middle term, which means it is the largest in the 
summation. So at this point, approximate analytic 
methods may be too inaccurate; instead, a program 
proves more helpful in approximating PR(m,n). First 
computing the products term-by-term (using the 
expression

PR(m,n)= (m / (4*1)) * ((m-1) / (4*2)) * ... *
((m/2+1) /(4*(m/2-1))) * ((m/2)/(4*m/2))
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resulted in overflows near the center of the 
product PR(m,n) for n=381; a far better approach is 
the computation of F(m,n) = log(PR(m,n)). After 
programming it, the function shows the following growth 
rate:

m = 2 10 1000 14000 37000 60000 70000

F(m,n) = -.301 -.34 -1.29 -1.87 -2.08 -2.19 -2.22

Since F is log (PR), this is a terribly slowly 
converging function (of course bounded by 0 and 1 due 
to the binomial theorem.) Such a convergence is evident 
(and provable by monotonicity and boundedness.) These 
values are far above the actual values. These values 
correspond to the true values for free abelian groups. 
In conclusion, this corollary is far too weak to be of 
statistical value but can act as an upper bound.

Note: In the above analysis, PR(m,n) finally
reduces to a function of m only. This is another 
property by which the above differs from the braid
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group. In B(n), as n increases, the ratio of identity 
words to all words decreases.

As a lower bound on the number of identity words 
of length m, the free group can be used (again, a weak
bound.) An identity word in the free group can be
expressed as:

W = wl w2 ... wk

where wi = a word composed only of generators

g and g' with an equal number of each.

Lemma 4: For k=l, there are n*C(m,m/2) identity
words of length m.

Proof: There are n choices for- generator g. Once
g is chosen, there are C(m,m/2) ways to distribute the 
negative generators.

QED

Lemma 5: For k=2, there are
n*C((m-2),(m-2)/2)* (n-1)*C(2,1) + 
n*C((m-4),(m-4)/2)*(n-l)*C(4,2) +
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n*C(2,1)*(n-1)*C((m-2),(m-2)/2) 
identity words of length m.

Proof: Follow the same process as k=l but split
into two subwords. Note that the n-1 prevents the 
generator in w2 from being the same as in wl.

QED to Lemma 5

Note: for cases k=3,4,...m-1, the sums become
very complex and while still describable, the 
expressions neither provide any deep insight, nor are 
they apparently reducible to simpler ones.

• • •

For k=m, there are n*C(2,l)*( (n-1)*c(2,1) )**(
(m-2)/2 ).

By summing over k=l to m, we get the total number 
of identity words of length m. Unfortunately, for k=3 
there are approximately (m/2)*(m/2-l)/2 terms, making 
the expressions too complex to deal with.
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For early work on group languages, consult 
Anisimov[1973]. More recent progress in the area is in 
Muller and Schupp[1983].
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II.0 Artin's Algorithm

Artin [1925-1926] defined B(n+1) (the braid group 
on n strands) and demonstrated that braids can be
characterized as automorphisms of the free group F(n).

Artin's algorithm takes a braid word W (expressed 
in generators s(i) and s(i)1 ), converts each generator 
into an action, applies those actions on the vector 
<l,2,...rn>, and freely reduces that vector of words. 
The actions that these generators create are:

s(i) : x(i) — > x(i+l)
x(i+l) — > x(i+l)' x(i) x(i+l)
x(k) — > x(k) for all k>i+l or k<i

s(i)1: x(i) — > x(ij x(i+l) x(i)*
x(i+l) — > x(i)
x(k) — > x(k) for all k>i+l or k<i

A simplified version of this algorithm would be:
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Step 1 READ BRAID WORD W ?
Step 2 INITIALIZE TUPLE = <1,2,...,N> 7
Step 3 LOOP UNTIL (W IS EMPTY) ;
Step 4 G = FIRST_GENERATOR( W ) 7
Step 5 W = W BUT WITH FIRST GENERATOR DELETED
Step 6 /* APPLY G AS AN ACTION ON TUPLE */

IF (G is a positive generator) THEN 
TUPLE(G) =TUPLE(G+l);
TUPLE(G+l)=TUPLE(G+l)' TUPLE(G) TUPLE(G+l)? 

ELSE
TUPLE(G) =TUPLE(G) TUPLE(G+l) TUPLE(G)' ; 
TUPLE(G+l) =TUPLE(G) ;

ENDIF;
Step 7 : /* FREELY REDUCE TUPLE */

CANCEL ALL OCCURRENCES OF a'a AND
aa' in TUPLE for all generators a ; 

Step 8 : END LOOP ;
Step 9 : IF (TUPLE=<1,2 , . . , n>) THEN PRINT('IDENTITY') ;

ELSE PRINT('NOT IDENTITY') ?
Step 10: HALT ;
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The above algorithm would appear to run in 
exponential time on the average because the tuple's 
words appear to grow exponentially. This, however, is 
no guarantee; in general, L-systems appear to have an 
exponential growth behavior and yet many cases exist 
which grow linearly. Likewise here, the 
free-reductions will demonstrate some clearly 
non-exponential cases.

For example, taking braid word
s(2)s(l)'s(2)s(l)s(2), the algorithm would compute as 
follows;

Initial Tuple ; < 1 , 2 , 3 , 4 >
Apply s (2) ;

< 1 3 3 1 23 4 >
Apply s (1)';

< 131' 1 3 '23 4 >
Apply s (2)

< 131' 3 ' 23 , (3'2'3)1(3'23) ,4>
Apply s (1) ;

< 3 ' 23 , (3'2'3)131'(3*23) , (3'2'313'23) ,4>
Apply s (2) :
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<3'23 ,(3'2'313'23) ,(3'2'31'3'23)(
3 '2 '3131'3'23) (3 *2 '313 *23),4>

Free reduction gives:
< 3 123 , ( 3 ' 2 ' 3 1 3 ' 2 3 ) , (3'2'3)(23)/ 4 >

An even better algorithm would not do a complete 
free reduction over the TUPLE words but only 
cancellations on the boundaries of the words being 
concatenated at each step. This version of the 
algorithm was implemented on the VAX 11/780 in PL\I. 
This version of the algorithm will be used in all 
further analysis. No further improvements are evident; 
"folding” the words down their "midpoint" generators 
would only cut space use in half.

II.A Exponential Worst Case for Artin's Algorithm

An analysis of growth rates of the freely-reduced 
words formed by applying generator pairs will 
constitute the core of the following proof:
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Theorem 1: Artin*s algorithm has an exponential 
time and space worst case.

Proof 1: First, we will need some lemmas,
definitions, and cases.

Partition the set of all braid words of length two 
into seven sets:
Set A = { s(i)s(i)' or s(i)'s(i) }

Set B = { s(i)s(i) or s(i)'s(i)' }

Set C = { g(i)g(k) where
g(m) = s(m) or s(m)1 and |i-k|>l}

Set D =  { s(i)'s(i-l)1 or s(i)s(i+l) }

Set E = { s(i)'s(i-l) or s(i)s(i+l)' }

Set F = { s(i)s(i-l)' or s(i)'s(i+l) }

Set G = { s(i)*s(i+l)1 or s(i)s(i-l) }

Def: A power-word of a set S = { a, b, ...}is a
word of the form a**n.
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Lemma A: Artin's algorithm runs in constant space
and linear time for power-words of set A.

Proof A: Every time relator s(i) is applied
(giving a TUPLE word of length 3 (like 3'23) ), the
relator s(i)' cancels the effect to give the initial 
TUPLE. At most one word will have length of at most 
three.

End of Proof A

Lemma B: Artin's algorithm runs in linear space
and quadratic time for power-words of set B.

Proof B; We need to prove this for only s(i)s(i); 
the inverse case will hold by symmetry. With no loss 
of generality, we can assume i=l, (all other cases will 
be isomorphic except for position.) For (s(i))**n where 
n<4, TUPLE words grow in the following manner:

1 , 2 , 3  , 4 >

, 2'12 , 3 , 4 >

, (2 ' 12) ' (2) (2 ' 12) , 3 , 4  >
50
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which reduces to:
< 2'12 , 2*1'212 ; 3 , 4  >

Apply s(l) :
<2'1 * 212, (2*1*212) 1(2*12) (2*1*212) , 3, 4> 

This looks exponential but note the reduction:
< 2'1 * 212 , (2'1'2'12) (12) , 3 , 4 >

From this point, an induction proof can start:

Sublemma Bl: For n>2, TUPLE words are of the
form:
<((2'1')**k)2((12)**k) , ((2*1*)**k) (2*12) ((12)**k) ,3,4>

for k odd, where n=2k+l
and

<((2'l')**k)(2*12)((12)**k) ,
((2*1*)** (k+1)) 2 ( ,(12) ** (k+1)) , 3 , 4> 

for k even, where n=2k+2.

Proof of Bl:
Assume TUPLE words:
<((2'l')**k)2((12)**k),

((2'1')**k) (2*12)((12)**k),3,4> for k odd, 
(the odd step of the induction, n=2k+l > 2) 

(i.e. TUPLE for s(i)**n.)
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Then, for s(i)**(n+l), we have by applying s(i):

<((2'11)**k)(2' 12)((12)**k) ,
((2'l')**k) (2'12) ((12)**k) ' ((2'l')**k)2((12)**k) ((

2•1 *)**k) (2112) ((12)**k) , 3 , 4 >

The second TUPLE reduces to :

( (211 1)**k) (2 ' 1'2) ((12)**k) ((211 1)**k)2) ((
2'12)((12)**k)))

which further reduces to:

((2'l')**k)(2'1«212)((12)**k)) 

which factors to:

((211')**(k+1))(2)((12)**(k+1))) , which is the 
even case.

So the even condition of the induction arises and is 
proven from the odd case, whose proof is completed 
below:

For s(i)**(n+2), we have by applying s(i) on the above 
case's first TUPLE word: ((2'1')**(k+1))2((12)**(k+1)).
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For the second TUPLE word:

((2 11 1) **(k+1))2((12)**(k+1))'((2'1')**k)(
2'12)((12)**k))((2'1')**(k+1))2((12)**(k+l))

which reduces to:

((2'1')**(k+1))2'((12)**(k+1))((2'l')**k)2')(
2(12)**(k+1))

reducing further to:

((2•1•)**(k+1))(2'12))((12)**(k+1)).

This completes the odd n case induction and so the even
case will also
hold.
End of Proof Bl.

In the above proof, TUPLE grows by 4 
generator-terms at each step, so s(i)**n will cause 
space requirement 0(4n).
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Before each reduction is completed, at most twice
the space is needed, so it requirement is 0(8n). In
either case, the function is linear space. Since at 
each step we have linearly many reductions and linearly 
many steps, the time required is quadratic.

End of Proof B.

Lemma C: Artin's algorithm runs in linear space
and quadratic time for power-words of set C.

Proof C; In this case, braid words (g(i)g(k))**n 
are considered where g(m) = s(m) or s(m)1

and | i - k | >1.

g(i) has a growth effect on TUPLE positions i and i+l. 
g(k) has a growth effect on TUPLE positions k and k+1.

Since | i - k | >1, g(i) and g(k) operate independently 
and produce independent complexity contributions. So, 
Space-Complexity((g(i)g(k))**n)

= Space-Complexity(g(i)**n)+ Space-Complexity(g(k)**n)

= 2(0(8(n/2))), according to lemma B.
So we have linear space.

5.4
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Similarly, the time requirement is quadratic.

End of Proof C.

Lemma D; Artin's algorithm' runs in linear space
and quadratic time for power-words of set D.

Proof D; We need to prove this for only
s(i)s(i+l); the other case (ie. s(i)•s(i-1)1) will
hold by braid-symmetry (ref. Garside [1965], the
mirror-images of braids.) With no loss of generality 
and to save notational space, we can assume i=l, (all 
other cases will be isomorphic except for position.) 
For (s(l)s(2))**m, TUPLE words grow in the following 
manner:

Initial Tuple : < 1 , 2 , 3  , 4 >
Apply s(l) :

< 2 ,  2 ' 1 2 , 3  , 4 >
Apply s (2) :

< 2 , 3  , 3 12 ' 123 , 4 >
Apply s(l) :

< 3 , 3*23 , 3'2'123 , 4 >
Apply s (2) :
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< 3 , 312 1123 , (3'2'123) • (3'23) (3'2'123) , 4>
which reduces to:

< 3, 3'2'123 , 3 12 ' 1'2123, 4 >
Apply s(l) :

< 3'21123 , 3'2'1'232‘123 , 3'2'1'2123# 4 >
Apply s(2) :

< 312 1123 , 3 12 11 12123 ,
(31211'2123) ' (3'2'1'232'123) (3'2*1'2123) ,4> 

which reduces to:
< 3'2'123, (3'2'11)2(123), (3'2•11)3(123), 4 >

Apply s (1) :
<(3'2'1')2(123), (3'2'1,)2,12(123) , (3•2'1')3(123), 4>

We needed all the above to reach the first step of the 
induction. From this late point, our induction starts:

Assume the following TUPLE:

< ( (3 12 111) **k)(w)(123)**k, ((312'1')**k)(x)(123)**k,
((3'2'1')**k)(y)(123)**k, 4 >

Applying s (2) produces:

< ((3'2'1')**k)(w)(123)**k ; ((3'2'1')**k)(y)(123)**k ,
(((3'2'11)**k)(y)(123)**k)'((3'2'l')**k)(

x)(123)**k((3'2'l')**k)(y)(123)**k , 4 >
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which reduces to:

< ((3'2'l')**k)(w)(123)**k , ((3 ' 2' 1') **k)(y)(123)**k ,
((3'2'l')**k)(y'xy)(l23)**k , 4 >

Applying s(l) produces:

< ((3'2'l')**k)(y)(123)**k ,
(((3 12 11 1)**k)(y)(123)**k)'((3'211')**k) (

w) (123)**k((312'1')**k)(y) (123)**k ' f
((3•211 1)**k)(y'xy)(I23)**k , 4 >

which reduces to:

<((3*2'1*)**k)(y)(123)**k/ ((3'2'l')**k)(y'wy)(123)**k, 
((3'2'1')**k)(y'xy)(123)**k , 4 >

So applying s(2)s(l) preserves the (3'2'l')**k left 
boundary and (123)**k right boundary. The growth of 
TUPLE depends on the "central" words (in w, x, y) and 
so we focus on them in the following table (starting 
where we left off in our initial step 
(ie. ((s(l)s(2))**3s(l) ):
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w=2 x=2112 y=3
Apply s (2)

2 3 3 12'123
Apply s(l)

3 3 1 23 3'2'123
Apply s (2)

3 3'21123 (3'2*123) ' (3'23) (3'2'123)
which reduces to

3 3'21123 3 12 11 12123
Apply s(l)

3'2'123 (312 1123) 13 (3'21123) 3'2'1'2123
which reduces to

3 12'123 (3'2,1 ,)232'(123) 3'2'1'2123
Apply S (2)

3 '2'123 (3 '2 11 1)2 (123) (3 '2 '1 '2123) ' (3'2 '1 1) (
232')(123)(3'211'2123)

which reduces to
3'21123 (3'2'11)2(123) (3'2'1•2'123) (3'2'1'23) (123)

which further reduces to
3'21123 (3'2'1■)2 (123) (3'211')3(123)

Apply s(l) 
and reduce to
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(312 * 1')2(123) (3'2'1')(2'12)(123) (3'2'1')3(123)

At this point, we note the "loop structure" and so the 
induction step-size would be (s(2)s (1))**3 (ie. six.) 
So, we have:
For m > 1, the TUPLE structure will be:

< ((3 ' 2 11')**m)2(123)**m , ((3'2'1')**m)(2'12)(123)**ra ,
((3'2'l')**m)3(123)**m, 4 > 

given braid word ((s(l)s(2))**(3m))s(l).

This implies 0(6(m/3)) growth, which means linear space 
growth and quadratic time. End of Proof D.

Lemma E: Artin's algorithm runs in exponential
space and time for power-words of set E.

Proof E: We need to prove this for only
s(i)s(i+l)' ; the other case (ie. s(i)'s(i-l)) will
hold by braid-symmetry (ref. Garside [1965], the 
mirror-images of braids.) With no loss of generality 
and to save notational space, we can assume i=l, (all 
other cases will be isomorphic except for position.) 
For (s(1)s (2)')**m, TUPLE words grow in the following 
manner:
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Initial Tuple : < wl , w2 , w3 , w4 >
Apply s(l) :

< w2 , w2' wlw2 , w3 , w4 >
Apply s (2)':

< w2, (w2'wlw2)w3(w2'wl'w2), w2'wlw2, W4> 
Apply s(l) :

< w2'Wlw2w3w21w l 1w2 ,
(w2'wlw2w3w2'W l 1W2)'(w2)(w21wlw2w3w21w l 'W2) , 

W2'WlW2 , W4>
Only w2 cancels in the middle of the second TUPLE word: 

<w21wlw2w3w21wl 'w2 ,
(w2'Wlw2w3'w2'Wl'w2)(wlw2w3w2'Wl1w2) , 

w21Wlw2, w4>
Apply s (2)':

<w2'wlw2w3w2'wl1w2 ,

(w21wlw2w3'w21Wl1w2wlw2w3w21wl1W2) (w2'wlw2)( 
W2'wlw2w3'W2'wl1w2wlw2w3w2'wl1w2)’ ,
W21Wlw2w31W2'Wl'w2wlw2w3w2'Wl'W2 >

Only w2'wlw2 cancels in the middle of the second 
TUPLE word.
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The growth pattern of the second TUPLE word (ie. 
the largest)

is doubling the previous one and deleting the one 
from three

steps behind. So the recurrence relation for the 
length of

the second TUPLE is:
a(n) = 2(a(n-l)) - a(n-3).

Since wl, w2, w3 are words, this argument is an 
induction because the final tuple words above can be 
resubstituted as initial words and the process 
repeated. As for the initial part of the induction, we 
need only delete the fw's from the above expressions 
(of case E); the proof is there.

All that remains is the complexity issue. 
a(n)=2(a(n-l))-a(n-3) is a homogenous linear difference 
equation. Using classical math.,

a(n) - 2(a(n-l)) + a(n-3) = 0 
We have characteristic equation: b**3 - 2b**2 + 1 = 0 .  
This gives eigenvalues:



www.manaraa.com

• Artin1s Algorithm

b=l , b=(1+(5)**(.5))/2 , b=(l-(5)**(.5))/2

In fact, the last two roots correspond to the Fibonnaci 
series roots. The general solution is:

a(n) = A1 + A2((l+(5)**(.5))/2)**n 
+ A3((l-(5)**(.5))/2)**n

Using boundary conditions:
a (0) = 1 , a(l) = 3 , a(2) = 7,

We have to solve:
1 = A1 +A2 + A3
3 = A1 +A2((1+(5)**(•5))/2) + A3((l-(5)**(.5))/2)
7 = A1 +A2((l+(5)**(.5))/2)**2 +A3((1-(5)**(.5))/2)**2

The solutions are:
A1 = -3
A2 = 2 + ((4/5)*(5)** (0.5))
A3 = 2 - ( (4/5)*(5)**(0.5))

Then, we need only plug back into our general solution 
above.
So,

a (n) = -3 +
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(2 + ((4/5)*(5)**(0.5)) )*((1+(5)**(.5))/2)**n + 
(2 - ((4/5)*(5)**(0.5)) )*((l-(5)**(.5))/2)**n 

is the exact growth rate. This would be the end of 
this lemma's proof but we are also concerned with what 
this exact answer means in a more clear (or real-world) 
manner.
Approximately,

a(n) *= -3 + (3.788)*(1.618)**n + (.21114) *(-0.618) **n .

The first and last terms drop out as 
insignificant.

We can adopt and alternate approach for 
understanding the growth rate relative to others (as 
follows.) Note that the solution will be bigger than 
the Fibonnaci series (ie. a(n)=a(n-l)+a(n-2) ) but 
smaller than 2**n (ie. a(n)=2(a(n-l)), a very close 
approximation.) However this is only the second (and 
largest word.) The word on one side has length a(n-l) 
and the other has a(n-2). So we have a total TUPLE 
length of

a(n) + a(n-l) + a(n-2) < 2(a(n)).
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So 2Fibonnaci(n) < Length(TUPLE) < 2**(n+l).
So case E requires exponential space and exponential 
time; really, at each step, (3a(n-l)+a(n-2)) copies 
and a(n-3) reductions are executed. The growth rate 
remains the same.
End of Proof E.

Lemma F: Artin's algorithm runs in exponential
space and time for power-words of set F.

Proof F: We need to prove this for only
s(i)s(i-l)' ; the other case (ie. s(i)'s(i+1)) will
hold by braid-symmetry (ref. Garside [1965], the 
mirror-images of braids.) With no loss of generality 
and to save notational space, we can assume i=2, (all 
other cases will be isomorphic except for position.) 
For (s(2)s (1)1)**m, the following table exemplifies the 
growth of TUPLE words:

Initial Tuple : < wl , w2 , w3 , w4 >
Apply s (2) :

< Wl , W3 , W3'w2w3 , w4 >
Apply s (1)':

< wlw3wl1 , wl , w31W2w3 , w4 >
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Apply s (2) :
< wlw3wl' , W31W2W3 , (w3'w2w3)'wl(w3'w2w3) , w4 >

Note: No cancellation will occur because s(2)
will cause concatenation to occur between words with 
boundary wl and w3 (likewise for s(l)1.) Again, string 
induction causes a property (such as boundary words) to 
hold. Since wl and w3 are initially 1 and 3, no 
cancellation can occur. As noted above, the boundary 
words repeat after each (s(2)s(l)') (ie. (two wl 
boundary and one w3 boundary) followed by (one wl 
boundary and two w3 boundary.)
The growth pattern is:

Applying s(2) implies increase total TUPLE space 
used by twice the third word.

Applying s(l)' implies increase total TUPLE space 
used by twice the first word.

The exact difference equations are:

a(n+l) = a(n) for n even
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b(n+l) = c(n) for n even

c(n+l) = 2*c(n) + b(n) for n even

a(n+2) = 2*a(n+l) + b(n+l) for n odd

b(n+2) = a(n+l) for n odd

c(n+2) = c(n+l) for n odd

To resolve the problem with the two sets of 
equations (even and odd), we concentrate on the 
growth aspect and use the "telescoped" (or 
composite equations:

a(n+2) = 2*a(n) + c(n)

b(n+2) = a(n)

c(n+2) = 2*c(n) + b(n)

Now we rewrite as homogenous equations:
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a(n+2) - 2*a(n) - c(n) = 0

b(n+2) - a(n) = 0

c(n+2) - 2*c(n) - b(n) = 0

From this point, we will treat the two steps ( in n+2) 
as one. We now apply the shifting operator used 
in the calculus of finite differences.

(E-2)a(n) - c(n) = 0

(E)b(n) - a(n) = 0

(E-2)c(n) - b(n) = 0

'Substituting (E)b(n) = a(n), we get:

(E-2)(E)b(n) - c(n) = 0



www.manaraa.com

• Artin's Algorithm

(E-2)c(n) - b(n) = 0

Substituting b(n) = (E-2)c(n) will give:

(E-2)(E)(E-2)c(n) - c(n) = 0.

Reduction results in:

(E**3-4E**2+4E-1)C(n) = 0.

This equation has solutions:

E=1 , E=(3-(5)**(0.5))/2 , E=(3+(5)**(0.5))/2

Now we recombine this with the fact that (n/2) is 
the real power to use instead of n (due to the 
two step approach) and we have:

c(n) = Cl + C2*((3-(5)**(0.5))/2)**(n/2)
+ C3*((3+(5)**(0.5))/2)**(n/2)

Note: if you feel uncomfortable with the intuitive 
way of resolving the two step problem, the formal 
way would be to use E**2 as the operator but this 
would give you the same result.

Returning back to the central problem, since a(n)
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and b(n) are E-linearly related to c(n), they too 
have the form:

b(n) = B1 + B2*((3-(5)**(0.5))/2)**(n/2)
+ B3*((3+(5)**(0.5))/2)**(n/2)

a(n) = A1 + A2*((3-(5)**(0.5))/2)**(n/2)
+ A3*((3+(5)**(0.5))/2)**(n/2)

In a big-0 analysis, these functions grow more 
slowly than’ those in Case E. Note that this is 
primarily true because of the (n/2) exponents.

End of Proof F.

Lemma G; Artin's algorithm runs in linear space
and quadratic time for power-words of set G.

Proof G: We need to prove this for only
s(i)s(i-l) ; the other case (ie. s(i)'s(i+l)') will 
hold by braid-symmetry (ref. Garside [1965], the 
mirror-images of braids.) With no loss of generality 
and to save notational space, we can assume i=2, (all
other cases will be isomorphic except for position);
therefore, we concentrate on (s(2)s (1))**m. The proof
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is similar to that of lemma D. The following table 
exemplifies the initial growth:
Initial Tuple : < 1 , 2 , 3  , 4 >
Apply s (2) :

< 1 , 3 , 3*23 , 4 >
Apply s(l)

Apply s (.2)

Apply s(l)

Apply s (2)

< 3  , 3'13 , 3 '23 , 4 >

< 3 , 3'23 , 3'2'123, 4 >

< 3*23 , 3 12'323 , 3'2'123 , 4 >

< 3'23 , 3'2'123 , 3'2'1'(3)123, 4>
Apply S (1) :

< 3'2'123, (3'2'1')2(123), (3'2111)3(123), 4 > 
Apply s (2) :

< 3*2'123, (3'2'1')3(123) , (3'2'1')3'23(123), 4 > 
Apply s(l) :
<(3'2'1)3(123)/ (3'2'1')3'13(123), (3 ' 2'1')3'23 (123),4>
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From s(2)s(l) on, the loop structure becomes 
apparent: every (s(2)s (1))**3 will produce another
(3'2'1') on the left of every TUPLE word (below 4) and 
(123) on the right. To prove this, first we show that 
previous (3'2'1') and (123)'s don't affect the 
situation, 
spl
Assume <(3'2'1')W(123),(3'2'1')x(123), (3'2•1')y (123)>. 

By applying s(2), we have:

<(3'2'1')w(123) , (3'2'1')y (123) , (3'2'1')y 'xy(123)>. 

By applying s(l), we have:

<(3•2'1')y(123),(3'2'l')y'wy(123), (3'2'1')y'xy(123)>.

So by induction here, (s(2)s (1))**n has no growth from 
(3'2'1') or (123).

So the growth pattern is due to the central words 
w, x, y. However, the example above demonstrates that 
w=3 , x=3'13, and y=3'23 will recur after (s(2)s (1))**3 
and, in doing so, will generate (3'2'1') and (123) on 
the left and right (respectively) of three TUPLE words. 
So the growth rate is (0(9(n/6)) for space and
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quadratic time due to the linear number of 
cancellations in each step.
End of Proof G.

»

The Remainder of the Theorem1s Proof ,

Sledge-Hammer Argument: To prove that
exponential-time and space are the worst possible, note 
that the transformation resulting in growth is x(i) — > 
x(i+l)'x(i)x(i+l). Assuming the worst (really 
impossibly bad) case that the iterations were applied 
to the same string each time and further assume that no 
cancellation occurs (even worse impossibility), then 
the largest words would be of length 3**n, which is 
exponential and not too far from case E. Now that we 
have shown 3**n is the absolute worst, cases E and F 
are actual cases that exponential one do exist.

Below is a proof that case E is the absolute 
worst, not 3**n.

Now to close the proof, we apply a "greedy" 
argument: Since type E patterns produce the worst
exponential growth, we need only apply them to produce 
the maximal growth pattern. So words such as
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(s(1)s (2) ') **n are the worst braid words.

Note: one may argue that a combination of types
will possibly produce a worse case but this is false 
because take any word of length n. By using other than
the exponential type patterns, growth is linear. If
exponential types are used, we note: the proofs above
assume initial words don't cancel; however, by
combining types this can't be guaranteed and so
cancellations could occur (making the growth very 
small.) If no cancellation occurs, even then the 
intermediate words will be smaller than in the 
exponential case and so the growth will never catch up 
with the all exponential case. The greedy argument 
before this note holds, but I hope this note removes 
any doubts.

Note: the above paragraph seems too sketchy, here
is one of four equivalent cases that remain to be 
proven (brevity and redundance prevent me from further 
exposition.)
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Start with <wl , w2 , w3 , w4 , w5 , >.

Applying 1 will give:

<w2 , W2'wlw2 , W3 , W4 , W5 , >.

Assume that the next generator g is nonadjacent 
(ie. |g—1 | >1.) In that case, only strings to the left 
of position w2 would be affected, resulting in very 
little growth. If we jumped like this, in the long 
run, it would decrease the exponent of our grow 
expressions (cutting it in half.) Since 3**n would be 
the absolute impossible worst case, 3**(n/2) would be 
the result of this, which is a function less than that 
of lemma E. Since the absolute impossible worst is 
"ruined” by this policy (picking |g—1 |>1), then the 
real strings would also be smaller than those of lemma 
E.

Instead let us assume the policy is not true. If 
1g—1 |=0, then we get linear growth (according to the 
lemmas.) If |g-l|=l, then we either get our previous 
policies (in .the lemmas, and hence covered) or we get 
rightward motions, 12'3 or 12'3'. However, these 
produce less of a growth because the larger expressions
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remain on the left as we pick generators further right. 
So non-pairwise generator selection will result in 
short strings (ie. we produce a trail of partial 
growths as we move.) Since this principle holds whether 
we select generators moving right or left, the case is 
proven.

End of Proof of Theorem 1.

Note: All the above lemmas were verified by
computer for braid words of length up to nine.

Note: The braid (s(l)s(2)')**n is interesting in
that no-unraveling can occur. In this sense, the TUPLE 
words sizes represent a "good" measure of real 
topological complexity. This opens up a totally new 
area of inquiry. Topological complexity of knots could 
be an interesting second step.

II.B Experiments in the Average Case 
for Artin's Algorithm

Before proceeding further with a formal analysis 
of Artin's algorithm, experiments demonstrated it's 
average behavior. By attaching a
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braid-word-enumerating subroutine, Artin's algorithm 
was run over all braid words upto a certain length. A 
statistical subroutine collected the results. In the 
resulting tables,
let: n = number of strands to the braids

m = length of braid-word
f(m,n) = average length of free-relator

(ie. TUPLE word) (given m and

n=2 n=3

m= 1 : 2.0000000000 1.6666666667
2 : 2.2500000000 2.0000000000
3 : 2.5000000000 2.3680555556
4 : 2.7187500000 2.7617187500
5 : 2.9250000000 3.1893229167

. 6 : 3.1145833000 3.6532118056
7 : 3.2946428570 4.1601097470
8 : 3.4638671875 4.7151311239
9 :

•

3.6258680556 5.3256615533
10 : 3.7800781250 5.9989243825
11 : 3.9286221591 6.7438931032
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n=4 n=5

1 : 1.5000000000 1.4000000000
2 : 1.7638888889 1.6125000000
3 : 2.0555555556 1.8432291667
4 : 2.3771219136 2.0953613281
5 : 2.7335390947 2.3723095703
6 : 3.1292509717 2.6775390625
7 : 3.5696034094
8 : 4.0604543687

n=6 n=7

m= 1 : 1.3333333333
2 : 1.5100000000
3 : 1.6991111111
4 : 1.9031166666
5 : 2.1243333333

1.2857142857
1.4365079365
1.5962301587
1.7666515101
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n=8 n=9

m= l 1.2500000000 1.2222222222
2 1.3813775510 1.3385416667
3 1.5194363460 1.4600332755
4 1.6654616566 1.5876481798

Note: these results were computed using a braid 
enumeration routine coupled with Artin's algorithm.

Clearly, the function f(m,n) is not linear in m 
(use any difference method.) By differences, it also 
does not appear to be quadratic. The growth rate 
appears to be less than quadratic and greater than 
linear. If it is a complicated expression with 
exponential terms, then it is starting extremely slowly 
as such. Warning: the n=2 case is totally deceptive
because there- is only one transformation and it's 
inverse (which would produce a linear to sublinear 
growth.) Use the tables for n>2.
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Interpreting f(m,n)'s growth with respect to n, 
(for small m) as n increases, with more TUPLE 
positions, the growth effect of allowing one more braid 
generator to be used in constructing braid words will 
result in smaller TUPLE words because the larger TUPLE 
words could have moved to a larger set of alternate 
positions. In other words, the effect of the braid 
transformations is distributed among more positions. 
The exponential growth pairs would have a higher 
probability of being applied on short TUPLE words, 
showing insignificant growth (for small m.) ‘ For
example, braid words in B(4) of length three will have 
smaller TUPLE words than braid words of B(3) of length 
three.

Unfortunately, for larger m, the growth behavior 
of relative to n becomes more complex. At m=5, the cut 
of curve f(m,n) (as n varies) has a peak at n=3 because 
n=3. has the capacity for exponential transformations 
(and since n=3 will receive the most concentrated 
effect from them, f(m,3) will grow faster than the 
tables with larger n.) These trends might not hold for 
m larger than these tables represent because the second 
differences for n=4 are larger than n=3. Extrapolating
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this, f(m,4) will eventually out grow f(m,3). This may 
occur because f(m,4) will have more exponential cases 
than f(m,3) even though they may be more concentrated 
with .f (m,3) .

One may argue that program ARTESIAN (in the 
appendix) should be run longer to produce larger f(m,n) 
tables; however, all the above tables required a 
continuous week of run time on a VAX-11/780. So over a 
few billion braids were tested in these runs. Further 
experimentation would require the next generation of 
computers.

II.C Analytical Results of Artin's Algorithm's:
Average Case

At first, a Markov matrix approach would seem 
appropriate for this problem. Let each row represent a 
generator and each column a corresponding generator. 
Start with an initial TUPLE vector and repeatedly take 
matrix products. Assume stationary conditions (in a 
constant stat.e or steady growth) and solve for them. 
All this works fine for studying L-systems and 
stochastic processes but with this system such a
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stationary state does not exist. As m grows, the
cancellations produce drastic contractions and the 
exponentiations produce larger explosions. In a sense, 
the ahistorical aspect will neglect the long chains of 
cancellations and exponentiations (unless the rows and 
columns represent products of generators but then our 
matrix increases in size exponentially while it's 
expressive capacity for the chain-effects (ie. 
historical effects) grows linearly, making this
modification unfeasible.) The median cases may be well 
represented but the total distribution would' be 
ignored; therefore, this approximation will get worse 
as m increases beyond 2. So L-system methods are 
useless here.

Next, by computing the contribution of the 
exponential cases to the general case, an answer may 
emerge. A combinatorial view would give:

4(n-l) = number of exponential generator-pairs

There are approximately 0(4(n-l)) words of length
m with k=m/2 exponential pairs of one kind. They
contribute 0(4(n-1)2**(m/2)) at most according to lemma 
E. Dividing by the total number of words (2n)**m, we
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have a contribution of: 0(4(n-1)(2**(m/2))/((2n)**m))
which reduces to:

4 (n-1)
(2**(m/2))(n**m)

As m grows,, this contribution is less than one. 
Now we look at words with k occurrences of an 
exponential pair (where k<m/2) . There are at most
C(m,k) ways to choose where to place the k pairs (in
fact, this is a rough upper bound.) Assuming no 
cancellation in these cases (to simplify the terms), 
those k pairs will cause at most 2**k growth (by lemma 
E.) Since there are m-2k generators remaining to fill 
in the braid word, we multiply by (2n)**(m-2k) to give 
all the cases. This also is a rough upper bound
because we should disregard the exponential pair 
mentioned above but that would give ((2n)**2
1)**((m-2k)/2) which asymptotically is the same. So we 
have the following contribution to the general case due 
to the exponent pair occurring k times cases (assuming 
all other actipn is linear):
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4 (n-1)C(m,k) 2**k( (2n) **(m-k))0(  )
(2n)**m

which reduces to:

4C(m,k)
0(  )

(n**(k-1))

This approximation does express the growth pattern
for very small m (such as how f becomes smaller as n
\grows while m remains fixed.) For larger m (such as 
m>10), this approximation is totally absurd because we 
left out the partial-commutativity effect, the effects 
of cancellation (anti-exponential on exponentially 
large strings), and finally that even if the 
exponential-pairs exist, if they cause growth in one 
string, then the next braid transformation might (very 
probably) switch that string out of the TUPLE slots 
which will be the range of the next exponential pair, 
thus the 2**k is a tremendous over-estimation. These 
three factors (ie. partial-commutativity,
cancellation, and slot-switching) would probably give 
the sub-quadratic growth behavior. Apparently, no 
analytic mathematical model lends itself adequately to 
expressing all these three properties simultaneously.
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The combinatorial approach used above could be refined 
to approximate the slot-switching but the other two 
properties are much harder.

Warning: at first, recurrence relations could be
written which match the pattern of the relators. After 
characterizing all of them, the problem unfolds: any
recurrence system assumes a unique path (or at least 
equally valued paths) to an initial value. 
Unfortunately, cancellation (primarily, it's 
non-monotonic effect) almost always negates this path 
criterion. Hence, this ostensibly general method of 
combinatorially dealing with presentations fails. Even 
if this was not the case, the recurrence relations 
would almost always be too complex to prove useful. 
The same holds true for a conditional probabilistic 
version of the above (unless very rough approximations 
are. taken which, in turn, would become worthless 
estimates.) Computations were carried out along these 
lines with no success.
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II.D An Interesting Note

Garside's algorithm's behavior is strongly 
dependent upon the number of strands n (or generators.) 
It blows up very quickly because of it.

Artin's algorithm has the same worst case for all 
n>2. Not only does n not affect it's worst case but 
Artin's average case behavior requires less storage as 
n increases (due to the spreading of the growth 
effect.)
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III.O Garside^ Word Problem Algorithm

Garside's algorithm for the word problem for braid 
groups was first presented in Garside[1965] and later 
published in Garside[1969].

III.A Definitions for the Garside Algorithm

Def: The product of successive generators is
denoted as pi(m) = al*a2*...am.

Def: The fundamental word of braid group B(n+1)
is the word FW=pi(n)*pi(n-l)*...*pi(l).

Example: FW for B(4) is 123121.

Def: The reflection of a generator g(k) is a
generator Ref(g(k)) = g(n+l-k).

Def: Two positive braid words (wl and w2) are
positively equal iff wl can be transformed into w2 by 
applying relations with only positive relations (ie. 
relations of the form a(i)a(j)=a(j)a(i) and 
a(i)a(i+l)a(i)=a(i+l)a(i)a(i+l).)
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Def: A word-graph or word-diagram of a positive
braid word W is a subgraph of the Cayley graph which 
characterizes all words positively equal to W. The 
word graph has a source (or origin) and a sink. The 
wordgraph is a directed acyclic graph. Its1 edges (or 
links) are labelled with the positive generators of 
B(n+1).

Example: The positive word 2123 has word-graph:
1

o---- o
2 / \ 2
/ \ 3o o—   o
\ 1/ /1 \ / / Io---- o--------o

2 3

The three positively equal words are 2123, 1213,
1231. By convention, the source is the leftmost node 
and the sink is the rightmost.

Def: The spine of a word diagram is the path from
source to sink labelled by the initial braid word. 
Occasionally, according to the context, the term spine 
will also be used in reference to any specific path 
with the property being discussed at the time.
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III.B The Xi-Theorem for the Garside Algorithm

A part of the Garside algorithm is missing in all
previous descriptions of it. In the segment for
handling non-positive words, Garside states that for
any braid generator ai, there exists a positive word Xi
such that:

ai' = ( Xi) * (FW') Garside proves such an Xi 
exists but his proof is not constructive. Later papers 
don't even make a suggestion as to what Xi is. The 
following theorem should resolve this situation:

Thm: If ai is the ith braid generator, then
ai'=(Xi)*FW' has (as a uniform, positive word) 
solution:
Xi = pi(n)*pi(n-l)*...*pi(n-i+2)*a2

*a3*...a(n-i+l)*p(n-i)*...*p(l).

Proof: Let Xi= ai'*FW.
By successive factoring, we get:

Xi= ai'*pi(n)*pi(n-1)*...*pi(n-i+2)*
al*a2*...*a(n-i+l)*...*p(l).

Xi= ai1*pi(n)*pi(n-1)*...*pi(n-i+3)*
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al*a2*a3*...*a(n-i+2)*al*a2*...*a(n-i+1)*...*p(1).

Now we let al commute over a3*...*a(n-i+2), giving:

Xi= ai'*pi(n)*pi(n-1)*...*pi(n-i+3)*
al*a2*al*a3*...*a(n-i+2)*a2*...*a(n-i+l)*..,*p(l).

But by the relator al'*a2'*al'*a2*al*a2, we have

Xi= ai'*pi(n)*pi(n-1)*...*pi(n-i+3)*
a2*al*a2*a3*...*a(n-i+2)*a2*...*a(n-i+l)*...*p(l).

which compacts to:

Xi= ai'*pi(n)*pi(n-1)*...*pi(n-i+3)*
a2*pi(n-i+2)*a2*...*a(n-i+1)*...*p(l).

This proves the initial step of .an induction proof 
of the following lemma:

Lemma: pi(n-i+k+1)*ak = a(k+l)*pi(n-i+k+l). This
lemma is Lemma 6 on page 20 of Garside's thesis[1965]. 
The proof is similar to the one above. This process of 
moving ak to the left and incrementing k by 1 finally 
gives:

Xi= ai'*ai*pi(n)*pi(n-1)*...*pi(n-i+3)*
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pi(n-i+2)*a2*...*a(n-i+1)*...*p(l).

Xi= pi(n)*pi(n-1)*...*pi(n-i+3)*
pi(n-i+2)*a2*...*a(n-i+l)*...*p(l).

which is the desired result.

End of Proof

Example: 2' = (1234)(23)(12)(1)

XII.C The Garside Algorithm

Step 1: Read Braid Word W = ala2...am
where each ai is a generator;

Step 2:
/★Loop to convert negative generators into */
/* positive words with negative */
/* fundamental words and shift fundamental */
/* words to the left (as a counter, count) */
/*Record number of negative generators in count */

COUNT = 0;
WORDPASS: DO I = LENGTH( BWORD) TO 1 BY -1?
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IF THE GENERATOR I IN BWORD IS AN INVERSE GENERATOR, 
THEN

INVCASE : DO?
IF (COUNT IS ODD)
THEN REPLACE GENERATOR I WITH POSITIVE WORD Xi; 
ELSE 

DO;
SET Xi = POSITIVE WORD CORRESPONDING

TO GENERATOR I ?
SET K = POSITION OF FIRST INVERSE GENERATOR 

OCCURRING IN BWORD BEFORE I ;
SUBSTR(BWORD,K+l,I—K) = REFLECTION(

CONCATENATE(SUBSTR(BWORD,K+l,I-K-l), Xi) ); 
END;

COUNT = COUNT - 1?
END INVCASE ?

ELSE IF (COUNT IS EVEN) THEN DELETE 
SUBSTR(BWORD,1,1)J

/ * IN THE ABOVE, WE DO DELETIONS TO AVOID */ 
/* DUPLICATION OF GENERATORS MOVED IN THE */ 
/* REFLECTION STEP */

END WORDPASS;
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Step 3j_ COMPUTE G = WORDDIAGRAM( BWORD );

Step 4;
/* SELECT A PATH WITH THE MAXIMAL NUMBER OF*/
/* FW'S, STARTING AT THE CONSECUTIVE */
/* ORIGIN OF WORDDIAGRAM OF BWORD */

SET POINTER PTR TO THE ORIGIN OF G.

LOOP
SCOUT = PTR ?/*SCOUT will scout ahead to see if a*/ 

/* whole FW starts at node PTR */
MATCH = TRUE;
DO I = 1 TO LENGTH( FW ) WHILE ( MATCH );

IF A LINK EXISTS WITH LABEL = GENERATOR I OF
FW

THEN SCOUT = LINK(SCOUT);
ELSE MATCH= FALSE;

END ;
IF (MATCH = TRUE) THEN 

DO;
PTR = SCOUT;
COUNT = COUNT + 1 ;

END;
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UNTIL ( NOT( MATCH) );

Step 5;
/* SELECT PATH STARTING AT PTR AND ENDING AT THE END */ 
/* WITH THE SMALLEST LABELS AT EACH STEP . */
/* THE LABELS OF THIS PATH CONSTITUTE THE BASE WORD */ 
/* OF THE REMAINDER */
MINPTR = PTR?
BASEWORD = "  ?
DO WHILE (MINPTR NOT-EQUAL-TO 0) ?

SELECT LINK (STARTING AT PTR) WITH SMALLEST LABEL; 
NAME THAT LINK MINLINK AND THAT LABEL MINLABEL; 
MINPTR = MINLINK(MINPTR)?
BASEWORD = CONCATENATE( BASEWORD , MINLABEL)?

END?

Step 6: .
PRINT 'THE GARSIDE FORM OF WORD IS FW**',

. COUNT,BASEWORD;
IF (COUNT = 0 AND BASEWORD='')

THEN PRINT 'THE WORD IS THE IDENTITY.';
ELSE PRINT 'THE WORD IS NONTRIVIAL.'?
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XII.D Turing Machine of Variant of Garside's Algorithm

A variant of Garside's algorithm can be 
constructed which will be proven to operate in 
non-deterministic linear time on a Turing Machine. 
Instead of computing the whole word-diagram, start with 
the initial word and by calling oracles, transform it 
into a word with the maximal number of copies of the 
fundamental word in front.

The Turing Machine is:

TURING_MACHINE: PROCEDURE;
Stepl:
Declarations: Tapes: Input , Output , Work , Work2

Oracle-Substitution (or OS) , FW 
Counters: FWCOUNT , Oracle-Position (OP)

Comment: After each call to the Oracle, OP will have 
the position of the desired substitution, while OS 
will have the substitution string (such as 212.) 

Comment: Input will have the format: X input-word Y.
Comment: Tape FW will have only a copy of the

fundamental word, enclosed in X and Y. X and Y are
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end-markers.
Comment: Input-head will start at rightmost generator. 

Step2:
/* Put positive version .of input word on Work tape.*/ 

DO UNTIL (Input-cell=X)
IF (Input-cell = negative-generator) THEN 

/* Next step computes Xi-word. */
Copy fundamental word from FW to Work2 
except for the Input'th occurrence of 1; 

Move FW head left until X;
Copy Work2 word to

the left side of Work word;
IF (Counter is even) THEN 

Move Input head left;
DO UNTIL (Input-cell =

negative generator or X); 
Copy Reflection(Input

generator) to Work;
Move Work head left;
Move Input head left;

END DO;
IF (Input-cell = X) THEN;

95



www.manaraa.com

Garside1s Word Problem Algorithm

ELSE
Move Input head right.

END IF;
COUNTER = COUNTER - 1;

ELSE
Comment: positive generator case.
IF (Counter is odd) THEN

Copy Input-cell generator to Work; 
Move Work head left;

END IF;
END IF;
Move Input head left;

END UNTIL;

Step3: /*Repeatedly call the oracle in main loop.*/ 
/*This will simulate the creation of */
/* a word diagram. */
Place X and Y markers to the

left and right of the Work tape word;
CALL ORACLE(OS,OP);
/* Oracle returns values on */
/* OP counter and OS tape.*/
DO UNTIL (OP = 0);
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/*0P = 0 means no more substitutions needed.*/ 
Move Work head to position OP.
Copy OS word starting in

that position on Work tape;
/*The above statement will write over */
/* previous contents in those positions.*/ 
/*So, tape OS may have 212 to */
/* overwrite 121. */
CALL ORACLE(OS,OP);

END UNTIL;

Step4&5: Comment: Pattern Match with FW
Reset FW head to leftmost;
Reset Work head to leftmost;
DO UNTIL (OUTPUT-cell = F OR

WORK head points to Y) ;
DO UNTIL (FW-cell = Y OR OUTPUT-cell = F); 

IF (FW-cell generator =
Work-cell generator)

THEN
Move FW head right;

ELSE
OUTPUT-cell = F;
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END IF;
END UNTIL;
Reset FW head back to leftmost generator;

END UNTIL;

Step6; IF (OUTPUT-cell not = F) THEN OUTPUT-cell = T; 
Comment: T means word is identity.
HALT.

END TURING-MACHINE;

III.E Analysis of the Garside Algorithm

We will analyze the Turing machine model (for 
preciseness's sake.)

Step 1 is the initial input assumption.

Step 2 makes a pass over the input tape and
produces a positive word on the Work tape. In this 
mapping, each positive generator in the input produces 
one positive generator in the work tape. Each negative 
generator will be replaced by a positive word of length
L = n(n+l)/2 - 1. Since n doesn't vary with length m

98



www.manaraa.com

Garside's Word Problem Algorithm

(of the input), L is constant relative to m. Hence, 
the input generators produce a work tape word requiring 
linear space. Note:, Counter counts the number of 
negative generators, therefore only requiring log 
space.

Step 3 depends on requires no extra space because 
all substitutions are of the same length as what they 
are substituting.

Note: The standard Garside algorithm differs with
the variant TM version only at this main point (with 
respect to complexity.) The remainder of this chapter 
is devoted to this point: How large can the word
diagrams grow!

Steps 4 and 5 are pattern matchs along the length 
of the work tape. In the Turing version, one matching 
process tests to see if the work tape is really just 
multiple copies of the fundamental word. In the 
standard version, Step 5 has an extra pattern match to 
compute the minimal tail (or remainder) word; however, 
this pattern match requires linear time and no extra 
space.
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Step 6 is the one character output.

Note: Except for Step 3, the whole algorithm (in
either version) would run in linear time.

we have just proven:

Theorem: A variant of the Garside algorithm (for
solving WP(B(n+l))) runs in non-deterministic linear 
space on a Turing Machine.

Savitch proved for Turing Machines that 
nondeterministic linear space problems can be solved in 
deterministic quadratic space (ref. Harrison[1978], 
page 286.) Hence, the following corollary:

Corollary: A variant of the Garside algorithm
(for solving WP(B(n+l))) runs ' in deterministic
quadratic space on a Turing Machine.

Note: this problem could still very likely take
exponential time because the decisions (that are made
via oracle) are complex ones, some substitutions
appearing to have no effect till many steps later.
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XXI.F Analysis of Word-Diagram Growth

III.F.l Three Complexity Measures

Three measures are of . primary concern in 
characterizing the complexity of a word-diagram:

1. number of nodes (of the graph), termed NUMNODE.
2. number of edges, termed NUMEDGE.
3. number of paths from the initial node to

the final node, termed NUMEQ. Equivalently,
NUMEQ is the number of positively equal words.

III.F.2 Relationships between NUMEQ and the other two

Theorem: There exists a sequence of words (in
B(n+1), for n>3) which have exponentially growing NUMEQ 
and.yet their word-diagrams have NUMNODE values only 
growing linearly (in the length of the word.)

Proof: Take braid words of the form
w(k)=(1322)**k. Note that 13 has an equivalent in 31 
but neither commutes over 2. Since two 2'a occur 
together, no production like 323=232 or 121=212 can be 
applied. Hence, the word-diagram (resembling an open
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necklace) has a linear NUMNODE growth rate but 
NUMEQ=2**k. (QED)

Theorem: There exists a sequence of words (in
B(n+1), for n>3) which have exponentially growing NUMEQ 
and yet their word-diagrams have NUMNODE values only 
growing quadratically (in the length of the word.)

Proof: Take.braid words of the form w(k)=(13)**k. 
The length of w(k) grows linearly in k.

NUMEQ(w(k+l)) = NUMEQ(w(k)13) > (2)*NUMEQ(w(k))
because, at the least, by partial commutativity, 13 can 
have the form 13 and 31. Note that this assumes 
independence of 13-pairs, which weakens the bound; the 
exact value of NUMEQ(w(k)) is C(2k,k).

Now for NUMNODE, we can draw the word-diagram:
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Word Diagram for w(k)
3 3 3 3

o >o >o > .. . o >o
• • • • •

/ / / ' ... / /
1 / / / ... / / I
/ / / ... / / o-->o--->o---> .. . o--->o/ / / ... / /

1 / / / ... / / I
/ / / ... / / o-- >o--->o--- > .. . o-- >o/ / / ... / /

1 /  / / . . . /  / I
/ / / ... / / o >o >o > ... o— ->o/ / / ... / /

1 /  / / ... /  / 1/ / / ... / /o >o >o > ... o >o
3 3 3 3

Every extra 13 in w(k) will add a new row and 
column, giving NUMNODE(w(k))=(k+l)**2 and
NUMEDGE=2k(k+l).

QED

So far, we have only shown a linear and quadratic 
NUMNODE with exponential NUMEQ (using commutativity.) 
Now let's exhaust the power of commutativity and see 
how large NUEQ can become by it. Note: First we will
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remove a restriction by allowing n to also vary as 
well, giving the full result.

Theorem: Let

V = l**(m/j)*3**(m/j)*...*(2j-l)**(m/j). We then 
get NUMEQ(V) > (j!)**(m/j) where 2j-l < n+1.

Proof: There are j! ways of permuting
(1,3,...,2j-l). If we treat V as (m/j) independent 
copies of (1,3>...,2 j-1), the results follow 
immediately. (QED)

So NUMEQ(V) can produce larger exponential 
functions provided n can increase.

If we remove the independence constraint, we have 
the exact value:

Theorem: NUMEQ(V) = (m!)/ ( ( (m/j)!)**j).

Proof: Refer to page 12 of [Liu, C.L.] (ie. j
categories of objects, (m/j) of each category, 
distributed into n distinct cells (alternately, can use 
multinomial theorem or induction on formula.))
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(QED)

As a side-theorem, we get from the above two: 
m!>((m/j)!)**j*(j1)**(m/j).

III.F.3 The relation between NUMNODE and NUMEDGE 

We have the bound following bound in general: 

NUMNODE-2 NUMEDGE < NUMNODE*n 

where n = number of generators.

Proof: Out-valence of word-diagram is at most n.

(QED)

The thinnest (or smallest) word-diagrams are the 
linear graphs. They have the smallest ratio, between 
NUMNODE and NUMEDGE. For these graphs, NUMEQ=1.

Theorem: The only words with linear graphs as
word diagrams are of the following forms:
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l**k, 2**k, ..., n**k, and any prefix or suffix 
(or center-word) of the words

u = (I**(kl)2**(k2)3**(k3)...n**(kn)) or

w = (n**(kn)...3**(k3)2**(k2)1**(kl)) or

u(l)w(l)u(2)w(2)...u(p)w(p) where p,k,kn,kl are 
greater than or equal to one and adjacent u's and w's 
have a common generator at their boundaries.

Proof: By exhaustion of prefix and suffix cases.
QED

III.F.4 Some Computed Combinatorics of Word-Diaqrams

FW 121 | 123121l 1234123121 |
NOMNODE 6 11 24

i
120 |i

NUMEDGE 6 1j 36l
1240 j

NUMEQ 2 1
1 16 768 |

Note: 12312 had only 12 nodes, 15 edges, and 5
paths.
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Note: 123412312 had only 60 nodes, 108 edges, and
168 paths. Compare these with the FW statistics above. 
The statistical patterns of Xi word-diagrams merits 
further analysis. Complexity of the positive word 
translation depends upon this.
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Asymptotics of FW**k in B(3) 
Word-Diagram Statistics for (121)**k

k NUMNODE NUMEDGE NUMEQ RATIO
1 6 6 2 3.1
2 19 24 8 2.5
3 48 66 38 2.3
4 109 156 196 2.16
5 234 342 1062 2.08
6 487 720 5948 2.04
7 996 2.025
8 2017 2.0138
9 4062 2.007

10 8155

NUMNODE((121)**(k+l))
RATIO means: ------------------------

NUMNODE((121)**k)

Note that the asymptotic behavior of RATIO tends 
toward 2.00 and that even the fractional-residues 
appear to be decreasing by a factor of 2. No reason 
has been found. This is one of very few examples of 
exponential growth of word-diagrams with respect to 
word length.
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III.F.5 A Worst Case for Word-Diagrams; Fundamental 
Words

Lengthy enumerations show that the fundamental 
words result in the largest word diagrams. For greater 
word-lengths, multiple copies of the fundamental word 
are the worst case. Though these tests were carried 
out upto word lengths of 20 (in B(3)) and less in 
B(n+1) (n < 10) , the behavior seems to hold true;
however, this remains a conjecture for. the untested 
cases.

Conjecture: The word-diagram for the fundamental
word FW(n) has growth rate NUMNODE(FW(n)) =
Factorial(n).

In fact, the nodes of the word-diagram for' the 
fundamental word can be labelled with permutations, 
exactly matching the symmetric group S(n). The 
generators labelling the edges correspond to 
transpositions exactly. Generator i corresponds to 
transposition (i i+1).
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The distance from the origin corresponds exactly 
to the number of transpositions in each permutation. 
One can show this from the patterns and factorizations.

The final node of the word-diagram has the
tpermutation:

/ 1 2 3 4 ... n\
( )\ n n-1 n-2 n-3 ... 1/.

As expected, this last node will have length 
(n)(n+l)/2, the distance of the word-diagram.

Very Important Note: A large word-diagram doesn't
just affect the word-diagram size as is; every 
positively equal word represented will each contribute 
the whole size also. So, for the above, the effect of 
this theorem will be Factorial (n) * (NUMEQ (FW)), the 
latter term being extremely large.

III.F.6 Partial Results Toward Factorial Conjecture

Theorem: The node with distance=l (from the
source) include l,2,3,...,n (ie. the single 
transpositions.)

110



www.manaraa.com

Garside's Word Problem Algorithm

Proof: In the last step of the Xi theorem
(constructing the positive word corresponding to a 
negative generator), FW is expressed with potentially 
any generator in front.

(QED)

Theorem: The word graph for the fundamental word
is symmetrical (with respect to origin and final node.)

Proof: Garside's thesis, theorem- 3(ii) states
that "Rev(fw) is positively- equal to fw". (QED)

Other partial results can be developed likewise. 
Note that even though Coxeter and Moser describe the 
relationship between the braid group and S(n), the 
word-diagram1s restrictions prevent any apparent 
application of such results.

An incremental word diagram theory seems like a 
fruitful endeavor but it is too complex due to the 
large number of cases. Perhaps using recurrence 
relations or inclusion exclusion may help. No operator 
theory for graphs has been developed yet. Prefixes and 
suffixes don't help much in terms of the strings. 
String transformations seem to resonate throughout a
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string rather than remain local or affect one 
direction.

III.F.7 Important Corollaries to the Factorial(n) 
Con j ecture

Note: If the Factorial(n) conjecture holds for
the fundamental word, then the breadth (or fatness) of 
the word-diagram will be at least Factorial(n)/( 
(n)(n+l)/2 ), which is about 2*Factorial(n-2). This
will have considerable importance with the next 
subchapter on asymptotics.

Note: The above breadth condition would have
strong ramifications upon the complexity of the variant 
algorithm we gave for Garside's algorithm. If we 
combine the next result (in the asymptotics subchapter) 
with the above results on 2*Factorial(n-2), then the 
number of non-deterministic decisions needed to 
transform one arbitrary path through the word-diagram 
into the maximally-FW prefixed path will be the average 
time complexity of the variant-Garside algorithm. 
Furthermore, the maximal number of s.teps to do this 
transformation will be the worst case behavior of the
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variant-Garside algorithm. In fact, the Garside 
algorithm's complexity will also be determined by it. 
Many powerful results just depend upon proving the 
conjecture (ie. Factorial(n).)

Note: Attempting to write a backtracking
algorithm to simulate the oracle seems impossible 
unless much space is wasted (upto quadratic space) or 
time (exponential at worst) or both. Even on small 
examples, the only way found was brute force.

III.F.8 Asymptotics of Word Diagrams

Asymptotic Theorem: As word length tends toward
infinity then the word-diagram has very high 
probability of having the breadth of at least the 
fundamental word (throughout the whole diagram.)

Proof: As word length tends toward infinity, the
probability of a word having at least one copy of the 
fundamental word is one. This is especially true 
because the transformation of the negative generators 
into positive words results in words which are almost 
the fundamental word.
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By commutativity, one copy of the fundamental word 
can commute the whole length of the word-diagram. 
Therefore, the word diagram will have have the breadth 
of the word-diagram for the fundamental word throughout 
the length of the word-diagram. (QED)

This is not a very sharp bound because it is 
linear with respect to the length of the braid word. 
It does not express the "central bulge" of most word 
diagrams.

Theorem: If we fix the length of a positive word,
then (after a point), changing the generator structure 
of the word will produce no larger word-diagrams.

Proof: If we produce the largest word diagram of
a given length, then it can have finitely many 
positive-relator substitutions with the number of 
distinct generators it is using. This is true because 
no positive relation (or substitution) can create a new 
generator. In simpler terms, if we have 143413133443, 
then by using positive substitutions, we can never get 
generator 2 in there.
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(QED)

So for a given length category, there is a 
maximally-sized word-diagram. We know this is 
certainly not true for most algebraic systems.

III.F.9 The Word Diagram as a Poset

Theorem; A word diagram (of a positive word in 
B(n+1)) is the graph of a partial order.

Proof: It suffices to show that the graph is an
acyclic digraph (via the following proof by 
contradiction.) If the word graph has a cycle, then it 
would characterize an infinite set of words. Since all 
words in the word graph have equal length, there can 
only be finitely many of them. Hence the contradiction 
arises. (QED)

Con jecture: A word diagram (of a positive word in
B(n+1)) is a lattice.

Though this is a conjecture, a large sample of 
computer generated word diagrams were tested with 
positive results. Weaker theorems can be proven by the 
relators but are too localized.
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Note: One possible proof of this could be
developed by the permutational representation of the 
word diagram in conjunction with the factorization 
conditions needed for a lattice.

III.F.10. Construction of the Worst Case Complemented 
Poset with Bounded Maximal Valence

In the process of studying word-diagrams, I have 
produced a beautiful example of recursively defined 
category of worst-case complemented posets with bounded 
maximal valence. The beauty of it lies in the proof 
that it is the worst case. The proof emerges 
recursively as the poset grows.

Further details can be provided.upon notice.

III.G The Word Diagram: Computational Aspects

There are a number of possible ways, to compute the 
word diagram of a positive word. In this chapter we 
deal with some of them.
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III.G.l Simple Closure Algorithm

Pack the initial spine of the word diagram (ie. 
the initial braid work in the lowest (or first) nodes 
in the linked list. Then, sequentially traverse this 
list repeatedly until no new nodes can be created. At 
each node traversed, apply all the relevant generators 
that have not produced an out-1ink.

This algorithm's space utilization grows 
monotonically, hence space and time complexity are very 
closely related. It appears to be fast and efficient 
in space usage. For two generators, it vorks perfectly 
and is extremely fast. Unfortunately, for larger n, it 
wastes much space and (due to the looping for closure) 
wastes much time too. In fact, it becomes 
unnecessarily exponential. The key to this is that it 
generates nodes in one loop before it computes the 
edge-closure of the other nodes previously created in 
the same traversal pass.

The real cause of this redundancy is a link that 
is duplicated. Once a link is duplicated, the 
subgraphs to be generated out of it are duplicated. So 
it grows exponentially as each single duplicate link
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reproduces whole subgraphs. On long strings, the 
effect is devastating.

This algorithm is the first one implemented and 
therefore the one used in the appendix of this text. 
In this program, the words’ 14364 and 14346 differ by 
one redundant node, due to creation of a node before an 
edge-closure test. This is the first case of it. 
Though a little too large to duplicate, the diagram 
actually shows where the redundancy occurs.

To remove the redundancy, node deletion and 
merging should occur but the tests for duplication are 
to expensive in time for this model and the redundancy 
is found out too late.
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Statistics for the Redundant Word-Diagram Size 
(using the Simple Closure Algorithm) 

NUMSTRAND 
4 5 6 7 8

Length=5 | 
AVE. |i 9.7 11.09 12.3 0 13.59 114.68 jl1MAX. ji 12 18 18 25 125 j

I1SAMPLE | 2100 3800 10000 4000 18000 j
Length=10| 

AVE. | 1 38.7 45.0 55.6 68.4 181.6 j
I1MAX. |

i
112 129 203 247 1289 j

I1SAMPLE j 2300 5000 11900 6000 18000 j
Length=15| 

AVE. | 121.3 133.9 1
111MAX. j

i
620 >1000 1

111SAMPLE | 2500 1000 1
1

Note: Length refers to word length.
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III.G.2 Simple Creation-Closure Phase Algorithm

This is another very time wasteful policy, far 
worse than the previous one (appearing to be quadratic 
in the previous one.) No space is wasted and the exact 
word-diagram is produced. This version of the 
algorithm was also programmed.

Basically, take the previous version but each time 
a node is created, a whole edge-closure traversal must 
be done. After that only can a next node be created.

Though this seems like brute force, the 
consistency of the algorithm is retained with minimal 
space usage.

Statistics for the Exact Word-Diagram Size
(using the Simple Closure Algorithm) 

NUMSTRAND=3
(Word length=l)

1=5 1=10 1=15 1=20 1=25

AVE. 19.05 |i 35.8 1108.7 j1 292 1745 j 1
MAX. 112 |j 63 234 | 741 12528 jI

SAMPLE 5600 | 3800 1250 | 2500 121000 j
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III.G.3 Backpath-Closure and Creation Algorithm

Same as the first policy but allow for the merging 
of backward relation paths. By merging them, some 
redundancies can be avoided but I don't know if all of 
them can be removed as in the second policy. This has 
not been tested as a program.

III.G.4 Creation-Deletion Algorithm

This is a non-monotonic approach where the nodes 
are created as in the first process except where a 
redundancy occurs, a redundant path is selected for 
deletion. Which one of the paths is up to the 
programmer; however, be very careful not to enter an 
infinite loop of regenerating and deleting the same 
path. Though great for efficiency, this algorithm is 
hard to test for correct behavior.
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IV.0 Burau Representation Algorithm(?) for B(n+1)

IV.A Burau Representation

Def: A group R is a representation of a group G
if there exists a homomorphism h:G— >R.

Def: A representation is faithful if the
homomorphism is one-to-one. Burau[1936] demonstrated a 
potentially faithful matrix representation for B(4) 
given below.

The Burau representation is a matrix group 
consisting of matrices with entries from the integer 
coefficient polynomials in variable t and 1/t where t 
is a rational. The group's elements are formed by 
taking all matrix products of the following six 
matrices:
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Burau representation of B(4) over Z[t,t**(-1)]
where t is in

s(l) — > |-t 1 0|
1 o 1 0|
1 o 0 11

s (2) — > | 1 0 0|
1 t -t H
1 o 0 i|

s (3) — > | 1 0 0|
1 o 1 o|
1 o t -t|

0 1 0 j
0  O i l

I 1 0 0 || 0 -1/t l/t|
1 0  O i l

1 0  0 | 
0 1 0| 
0 1 -1/t|

where s(i) = ith standard braid generator

An open problem that remains outstanding (despite
many efforts) is to show that the mapping is faithful.
As a matter of convenience, it shall henceforth be 
called the Burau Conjecture.

To prove it true, we need to show that a braid
word is the identity if it's representation (a matrix
product) is the identity matrix.
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Example: l'S'IS = identity would then require the
following product in the matrices of polynomials in the
Burau representation:
|-1/t 1/t 0| |1 0 0|
I I I Ij o  1 oj jo 1 0|
I II I| 0 0 1| |0 1 -1/tI

IV.B Burau Representation Algorithm(?)

Burau Algorithm for B(4):
StepO: Burau: Procedure;

Stepl: Declare (MATRIX,WORK) as a 3 by 3 matrix, 
each entry of which is a 1-dim. array 
of coefficients of a polynomial in 
t and t**-l; these coefficients have 
indices (-P to +P).

READ BRAID WORD W=ala2...am;

Step2: MATRIX = IDENTITY-MATRIX;

Step3: MAINLOOP: DO IPOS = M TO 1 BY -1;
GEN .= GENERATOR IN POSITION IPOS IN W
CALL PRODUCT(GEN,MATRIX);

■t 1 0| |1 0 0| | 1 0 0 |
n  1 = 1  i

0 1 0 | jo 1 oj = | 0 1 0 | 
II 1 = 1  I0 0 1| 0 t -t 0 0 II

Step4: END MAINLOOP;
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Step6: 

Step7:

Step8:

Step9: 

Step10

Stepll

Burau Representation Algorithm for B(n+l)

IF (MATRIX = IDENTITY-MATRIX)
THEN PRINT 'TRUE; MATRIX IS IDENTITY.'
ELSE PRINT 'FALSE; MATRIX IS NONTRIVIAL.'

END BURAU;

/* THE REMAINDER OF THIS PROGRAM IS THE */
/* SUBPROCEDURE PRODUCT. */
/* THIS PROCEDURE COMPUTES; */
/* MATRIX = REPRESENTATIVE(GEN)*MATRIX*/ 
PRODUCT: PROCEDURE(GEN , MATRIX);

DECLARE AND STORE BURAU REPRESENTATION AS 
SIX MATRICES; BUR(6).ELEMENT(3,3).

RESET WORK TO ZERO MATRIX;

/*DO STANDARD MATRIX PRODUCT TRIPLE LOOP*/
ILOOP: DO I = 1 TO 3;
JLOOP: DO J = 1 TO 3;
KLOOP: DO K = 1 TO 3;

/★PICK THE ENTRY OF THE BURAU REP. IN */
/* POSITION (I,K) TO MULTIPLY WITH. */ 
TENTRY = BUR(GEN).ELEMENT(I,K);
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Stepl2:

Stepl3:

Step14:

Stepl5:

/* MAIN DO-CASE HANDLES (I,K)*(K,J) */
B1GCASE:DO CASE;

Casel: Caseif ( TENTRY = 0 );
/*do nothing, really adding O-vector*/

End Casel;

Case2: Caseif ( TENTRY = 1 );
/*add two polynomials*/
/*add bur(gen).ele(i,k)*matrix(k,j) */
/* to work(i,j). */
/* Note: bur(gen).ele(i,k)=l */
WORK(I,J) = ADDVEC(MATRIX(K, J),WORK(I,J)); 

End Case2;

/♦before doing any more cases, define */
/* procedure ADDVEC --- a function */
/* which adds two vectors and returns */ 
/* their sum as the value of ADDVEC. */ 
ADDVEC: PROC(VECT0R1 , VECT0R2);

PO KA = -P TO +P ;
SUM(KA) = VECT0R1(KA) + VECT0R2(KA);

END;
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Stepl6:

Stepl7:

Stepl8:

RETURN (SUM(-P : +P) ) ;
END ADDVEC;

Case3: Caseif ( TENTRY = -1 );
/★subtraction between two polynomials*/ 
/★add bur (gen) ,ele(i,k) *matrix(k, j) */
/* to work(i,j). */
/* Note; bur(gen).ele(i,k)=-l ' */
WORK(I,J)= ADDVEC( -MATRIX(K,J),WORK(I,J));

End Case3;

Case4; Caseif ( TENTRY = t );
/★add two polynomials*/
/★add bur(gen).ele(i,k)*matrix(k,j) */
/* to work(i,j). */
/* Note; bur(gen).ele(i,k)=t */
/* t*poly(t) = right shift poly(t) */ 
WORK(I,J) = ADDVEC(SHIFT('RIGHT',

MATRIX(K,J)),WORK(I,J));
End Case4;

/★before doing any more cases, define */
/* the vector-valued function SHIFT */
/* which just shift coefficients of */
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/* a poly, in an array by 1 position. */ 
SHIFT:PROCEDURE(DIRECTION , VECTOR)?

IF (DIRECTION = 'LEFT1) THEN 
LEFTCASE: DO;
DO Q = -P+l TO P;

VECTOR(Q-l) = VECTOR(Q)?
END?
VECTOR(P) = 0 ?
END LEFTCASE ?

ELSE
RIGHTCASE: DO;
DO Q = -P TO P-l?

VECTOR(Q+l) = VECTOR(Q)?
END?
VECTOR(-P) = 0 ?
END RIGHTCASE;

RETURN(VECTOR);
END SHIFT;

Stepl9: Case5: Caseif ( TENTRY = -t ) ?
/*Subtraction of two polynomials*/ 
/*add bur(gen).ele(i,k)*matrix(k,j) */ 
/* to work(i,j). */
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/* Note: bur(gen).ele(i,k)=-t */
/* -t*poly(t) = right shift -poly(t) */ 
WORK(I,J) = ADDVEC(SHIFT('RIGHT',

( -MATRIX(K,J))),WORK(I,J))?
End Case5;

Step20: Case6: Caseif ( TENTRY = 1/t );
/*add two polynomials*/
/*add bur(gen).ele(i,k)*matrix(k,j) */
/* to work(i,j). */
/* Note: bur(gen).ele(i,k)=l/t ‘ */
/* l/t*poly(t) = left shift poly(t) */
WORK(I,J) = ADDVEC(SHIFT('LEFT',

MATRIX(K,J))/WORKfl,J));
End Case6;

Step21: Case7: Caseif ( TENTRY = -1/t );
/*add two polynomials*/
/*add bur(gen).ele(i,k)*matrix(k/j) */
/* to work(i,j). */
/* Note: bur(gen).ele(i/k)=-l/t */
/* -l/t*poly(t) = left shift poly(t) */ 
WORK(I,J) = ADDVEC(SHIFT('LEFT',
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-MATRIX(K, J)),WORK(I,J));
End Case7;

Step22: END BIGCASE; /*end the DO CASE */
END KLOOP;

END JLOOP;
END ILOOP;

END PRODUCT; /* END OF SUBPROCEDURE */

Warning: This program is correct for WP(B(4)) iff
the Burau conjecture is true. Evidence of the latter 
will be presented in a later subchapter.

If the Burau conjecture was not true, then this 
algorithm will accept (as identity braids) some 
non-identity braids. Either way, this algorithm is a 
valid sufficient condition for a 4-braid not being the 
identity.
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IV.B .1 Complexity of the Algorithm

The space bound for this algorithm is:

0(2(9*2m)) = 0(m) coefficients.

The nine arises from the number ' of polynomials.. 
The first two arises from the fact that t*Poly(t) and 
l/t*Poly(t) cause a two directional growth for each 
polynomial. The second two arises from the necessity 
of a Work array. Other intermediate computations 
require temporary space, bounded by 5m coefficients.

Each coefficient can grow in value (at worst) as 
3**m ( this is an upper bound which is clearly not 
tight.) To see this, note that at each matrix product 
step, each new polynomial will be the sum of three 
previous polynomials.

On a base three machine, each new matrix product 
requires each coefficient to expand by one more digit. 
On a base-k machine, the result still remains a 
constant growth at each product step, hence 0(m) new 
bits per step.’
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So the space complexity is at worst bounded by 
0(m**2).

The time complexity is at worst bounded by 
m*9*3*2m additions and shifts. Since the additions 
occur over linearly growing coefficients, this would 
seem to give 0(m**2*log(m)) but the shifts occur over 
linearly growing coefficients, so assuming a 
fixed-word-size machine, each shift will require linear 
time. So the final bound is cubic time.

Problem: For the average case behavior,* the
central issue involves how sparse are these matrices in 
general. During implemented runs, some sparse cases 
were observed (some with interesting patterns) but 
occurrence was infrequent.

The next section introduces a superior algorithm 
in terms of space requirements.

IV.C The Lipton-Zalcstein-Burau Algorithm

Lipton and Zalcstein[1977] proved that if a group 
is linear, then it's word problem is solvable in 
logspace.
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If Burau's conjecture is true, then B(4) is a 
linear group. Lipton and Zalcstein[1977] proved part 
of their theorem by constructing a logspace algorithm 
for linear groups. Therefore, the Lipton-Zalcstein 
algorithm can "solve" WP(B(4)) in logspace (ie. 
"solve" in the sense of the Burau algorithm, except 
more efficiently.)

IV.D Word Problem for B(3) is Solvable in Logspace

B(3) has a faithful Burau representation; hence, 
it is a linear group. Therefore, the word problem for 
B (3) is solvable in logspace (ie. solvable in the 
absolute sense, without dependence on conjectures 
holding.) The algorithm is that of Lipton and 
Zalcstein[1977].

IV.E The Burau Conjecture: New Insights

Reversing the reasoning in the previous section, 
if a logspace algorithm for WP(B(4)) exists, then it 
would act as more evidence toward showing B(4) is a 
linear group. This would not prove the Burau 
conjecture because this can't prove that the Burau
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representation is the right one (ie. the faithful 
one), as well as not proving even linearity. However, 
the logspace algorithm would add further evidence that 
the Burau conjecture is true. So far, there is a long 
history of papers building up evidence, as described in 
the next section. The nature of the conjecture is 
intrinsically complex.

A proof that no logspace algorithm exists for 
WP(B(4)) would result in the Burau conjecture being 
false. In a later chapter on Lisa's algorithm, this 
will appear to be the case. Despite many unsuccessful 
trials, an even newer "algorithm" is presently being 
constructed which has the logspace feature but is not 
completed yet (due to its' length.)

IV.F Previous Results Toward the Burau Conjecture

In general, Burau showed that B(n+1) has the 
representation:
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sigma(i) =

where: I(k) 
A

I(i) 0 0
0 A 0
0 0 I(n-i-l)

kxk identity matrix
1 1-t t |I II I  0 |

Gassner[1961] gave a representation for the 
unpermuted subgroup of B(n+1).

Magnus and Peluso[1967] showed that the Burau 
representations of B(2) and B(3) are faithful.

Birman[1974] showed that the Burau representation 
for B (4) is faithful iff the group GM generated by the 
following two matrices a and b:

-t 1 0 I 1 1 1 1-t -1/t 1/t |
a. = 0 1 1 Io I , b = 1i 1—t**2 -1/t o 1

0 1 1 1 -l/t| | 1 -1/t o I
is free.
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Birman[1974] also provided a complete review of 
the previous results but in a more general setting, as 
well as very powerful new results associating the 
categories of Magnus representations, the Alexander 
polynomial, and some decision procedures.

Magnus and Tretkoff[1980] proved that the
linearity of Aut(F(2)) implies the linearity of
Aut(F(n)).

Siegfried Moran[1980] showed that {a,c> generate a 
free group (where a and b were the matrices of GM and 
c=ab'.) Furthermore, he demonstrated that {a',cac} 
generate a free group, as well as other similar sets.

Dyer, Formanek, and Grossman[1981] showed that
linearity of Aut(F(2)) is true iff B(4) is linear.

Craig Squier[1984] showed that a variant of the 
Burau representation is unitary and reduced the Burau 
conjecture to two others. Unfortunately, neither 
conjecture has been proven. They involve the
relationship between kernels in a mappings involving 
the addition of relators of the form s(i)**k for all i 
(where k is fixed.)
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Among other important recent papers are those of 
Lipschutz[1961], Gorin and Lin[1969], Tits[1972], and 
Dixon[1972].

IV.G Partial-Computation for Faithfulness Testing

By treating program Burau as a subroutine in a 
larger program for enumerating braids and also 
inserting the Artin algorithm as a subroutine, we have 
an procedure for recursively enumerating braids which 
act as counterexamples to the Burau conjecture. 
/*Partial-Test for Faithfulness*/

StepO: W=l;

Stepl: LOOP FOREVER;

Step2: CALL ARTIN(W);

Step3: IF (ARTIN RETURNS FALSE) THEN
/* nontrivial braid*/
CALL BURAU(W);
IF (BURAU RETURNS TRUE) THEN

PRINT, W 'DISPROVES BURAU CONJECTURE1; 
STOP;

137



www.manaraa.com

Burau Representation Algorithm for B(rH-l)

ENDIF;
ENDIF;

Step4: L = LENGTH(W);

Step5: CALL NEXTWORD(W);
/* this subroutine generates the next */
/* braid word W in a breadth first */
/* way, returning it in W. */

N

Step6: K =  LENGTH(W);
IF (L < K) THEN

PRINT 'BURAU CONJECTURE IS TRUE FOR' ?
PRINT 'ALL WORDS OF LENGTH = ' L 7 

ENDIF;
Step7; END LOOP /*forever*/?

END-OF-PROGRAM

This program was run for all braid words of length 
upto and including nine but with no resulting 
counterexamples. Hence Burau's algorithm and the 
others based on the Burau conjecture work for braids of 
length nine. At the very least, it adds further 
evidence that the Burau conjecture may be true.

138



www.manaraa.com

Burau Representation Algorithm for B(n+1)

A proof that the Burau conjecture holds for all m 
if it holds for all m less than a certain k seems like 
a possibility.

IV.H Lie Ring Representation Algorithm for B(4),

S. Lipschutz[1961] characterized important 
subgroups of B(4) in terms of automorphisms of free 
rings. This alternate approach warrants further 
analysis.
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V.0 Combing Algorithm for B(n+1)

V.A Braid Word Formalism

L. 0. James[1971] devised an alternate notation 
for braids. In the L. 0. James notation, a braid is 
represented as a finite sequence of integer pairs, the 
first number in the pair unsigned, the other signed. 
Each generator in the standard notation becomes one 
pair in the James notation. In the L. 0. James 
notation, each strand's original input number is used 
throughout the notation.

So, (a -b) means strand a goes under strand b.

V.A.l An Example of the James Notation

Starting with braid 1 12 11'212, we 
vector and apply those transformations:

Vector Transformation

1 , 2 , 3 , 4
-----------------------  ! i (1 - 2 )

2 , 1 , 3 , 4
-------------------  2' (1 -3)

construct a

Notation
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2 , 3 , 1 , 4
-3)

1)

1)

2 )

Note: The vector records the effects and’ the
strands affected. The James notation then records the 
affected strands.

V.B More Definitions

Def: A braid is unpermuted iff the order of the
output strands matchs the order of the input strand. 
In other words, the permutation resulting from the 
braid is the identity.

Example: .123 is a permuted braid while 1111 and 
1212•1*2' are not.

3 , 2 , 1 , 4

3 , 1 , 2 , 4

1 , 3 , 2 , 4

(2

(2

(3

(3
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Def: A braid C is in combed iff it is unpermuted
and it has the structure clc2c3c4c5...cn where ck is a 
subbraid in which only the kth strand is permitted to 
move (or cross) over or under any other strand provided 
that the other strand has a higher strand number (ie. 
k+1, k+2, ..., n.)

Example: 1123322332 is a combed braid where cl=ll
and c2=23322332.

Artin[1950] showed that, after free-reduction, the 
combed form of a braid is unique.

V.C The Combing Algorithm

V.C.l Notes

The combing algorithm used takes a braid in 
standard notation and converts it into James notation. 
Unlike combing, I first test for permutedness (in fact 
this is done for free because the notation conversion 
involves a vector which already will compute the 
permutation. .
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Note: A necessary condition for a braid to be the
identity is that the braid be unpermuted. This reduces 
time by a factor of Factorial(n).

Note: The core of the combing algorithm
(described below) i*s really a two stack algorithm, 
where the finite control looks at the top two pairs on 
the stacks and applies productions accordingly. The 
first stack (W) starts with the initial braid and the 
algorithm halts when the first stack is empty. At the 
termination, the second stack (called C) has the final 
combed braid. This core algorithm was developed over a 
series of papers, primarily Artin[1950], L. 0. 
James[1971], Thomas[1971], and Thomas[1972). It was 
previously implemented by Luginbuhl[1973] in LISP. The 
present PL/I implementation incorporates a variant of 
the Luginbuhl algorithm, solving WP(B(n+l)) instead of 
combing braids.

V.C.2 The Combing Algorithm

Procedure to Solve WP(B(n+l)) by Combing 

comber: proc;
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Stepl: Comment: Initialize vector of strands.

/* must initialize vector as <l,2,3,4...> */ 
del vector(40) fixed bin; 
init40: do iv=l to 40?

vector(iv) = iv; 
end init4 0 ;

Step2: Read input braid word (BWORD) in
standard notation;

Set stack W to nil.
Set stack C to nil.
Stacks W and C are stacks of pairs (a,b).
/*W is a Work-stack and C is a stack containing */ 
/* the part of the braid that is combed so far. */

Step3:/*Translate braid word to L.O. James notation.*/ 
transloop: do itrans = 1 to length(bword.gen);

/* Translate generator to numeric.*/ 
get string (substr(bword.gen,itrans,1))

edit (ivec) (f(l));
/* Get the strand number which ivec acts on.*/ 
istrand «= vector (ivec);
/* Compute second element of the James pair.*/
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if (substr(bword.expon,itrans,1)=' •) then 
posgen: istrand2 = vector(ivec+1);

else
neggen: istrand2 = -vector(ivec+1);

/* Now push on the stack. */
call PUSH( (istrand,istrand2) on to W);
/* apply action of generator on the stack.*/ 
itemp = vector(ivec); 
vector(ivec) = vector(ivec+1) ? 
vector(ivec+1) = itemp; 

end transloop;
/* Now, stack W contains the.initial */
/* braid in L.O.James notation. */

Step4: /* Test if braid is permuted. Delete if so. */

/*Note that the L.O.James algorithm will work */ 
/* for unpermuted braids; however, that */
/* subgroup contains the identity, so we */
/* need first test if this braid is unpermuted.*/ 
unperm; do .iperm = 1 to 40;

if (vector(iperm) = iperm) then; 
else
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permed: do ;
put skip list ('permuted braid has',

' quotient perm: V ,vector) ; 
put skip list ('not the identity')? 
stop; 

end permed; 
end unperm;

Step5: Comment: Call the main combing algorithm. 
Call C0MB3;

Step6: Comment: Combing routine (begin main loop.) 
C0MB3: do ;

/★initial work stack has input braid*/ 
/★initial combed stack is */
/★ empty (ie. has identity braid)*/

/★loop until work stack is nearly */
/★ empty (ie. all translated into*/
/* combed form in combedstack) */
looptillnearempty: do while (topW > 2);

Step7: /*set up (ie.pop out) context */
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/* to apply a production now */ 
call pop( (c,d) off stack W); 
call pop( (a,b) off stack W); 
resetlpair = false;

Step8: /*Main Do-Case will split into types*/
/* of productions. */
MAINDO: DO-CASE;

Step9: /*see if production is a cancellation*/
/* (ie. (c,d)(d,-c) type pair of pairs.)*/ 
Cancelcase:
Caseif ( (c=|b|) & (a=|d| & sign(b)=-sign(d))) 

/♦cancellation pair annihilated*/
/♦reset context by one pair to */
/* guarantee correctness*/
resetlpair= true;

End Cancelcase;

SteplO:/*This is the second case.*/
/♦Case of shift pair on to stack C because */ 
/* combing partial order is satisfied*/
Shiftpaircase;
Caseif (min(c,|d|) >= min(a,|b|)) ;
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/*Shift one pair over to combed, since */
/* interpair order is okay. Keep other */
/* on the work stack for next loop. */ 
call PUSH( (c,d) on to stack C );
call PUSH( (a,b) on to stack W );

End Shiftpaircase;
/★The remaining six cases need order change.*/

Stepll:/*Boundary Case (need only switch order) */ 
Milddisordercase:
Caseif (topC=0) ;

/★empty stack case*/ .
/♦simple switch and shift*/ 
call PUSH( (a,b) on to stack C );
call PUSH( (c,d) on to stack W );

End Milddisordercase;

Stspl2:/*A11 remaining five cases need more context */ 
/* and require more complex productions. */■ 
COMPLEXPRODUCTION:
DO-CASE’ ;

/★need more context for these productions*/ 
call POP( (e,f) off stack C);
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/* to preserve correctness, must reset to */ 
/* allow next loop to compare these to */ 
/* previous pairs */
resetlpair=true;

Stepl3:/*First of the complex productions*/
Prodlcase:
Caseif (a=c & c=|f| & e=|d|) ;

call PUSH((|b| , -sign(b)* |d|) on to stack W)
call PUSH((a / d ) on to stack W)
call PUSH((|d| , sign(d)*a ) on to stack' W)
call PUSH((|d| , b ) on to stack W)
call PUSH((a / b ) on to stack W)

End Prodlcase;

Stepl4:/*Second of the complex productions*/ 
Prod2case:
Caseif (a=c & |d|=|f| & e=|b|);

call PUSH((|b| ,-sign(b)* td| ) on to stack W);
call PUSH((a , sign(d)* Id ) on to stack W);
call PUSH((a / b ) on to stack W);
call PUSH((|d| / b ) on to stack W);
call PUSH((|b| , sign(f)* Id] ) on to stack W);

End Prod2case;
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Stepl5:/*Third of the complex productions*/ 
Prod3case:
Caseif (a=|f| & |b|=|d| & e=c) ;

call PUSH ( (c, -sign(b)*a on to stack W );
call PUSH ( (c, sign(d)*|b| on to stack W ) ;
call PUSH ( (a, b on to stack W ) ;
call PUSH ( (a, sign(b)*c on to stack W ) ?
call PUSH( (c, sign(f)*a on to stack W ) ;

End Prod3case;

Stepl6:/*Fourth of the complex productions*/
Prod4case:
Caseif (|b|=|d|& e=|d|& c=|f|& sign(d)=sign(f));

call PUSH( (c ,-sign(b)*a ) on to stack W ) ;
call PUSH( (c , sign(d)* |bf) on to stack W );
call PUSH ( (|b| , sign(d)*c ) on to stack W )
call PUSH ( (a , sign(b)*c ) on to stack W )

call PUSH ( (a / b ) on to stack W );
End Prod4case;

Stepl7:/*Fifth of the complex productions*/ 
ProdScase:
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/* Otherwise Case*/
Caseif (TRUE) ;

/*need to reorder only */ 
call PUSH( ( c, d) on to stack W );
call PUSH( ( a, b) on to stack W );
call PUSH( ( e, f) on to stack W );

End Prod5case;

Stepl7.5: /*Close all DO-CASEs*/
End COMPLEXPRODUCTION;

End MAINDO;

Stepl8:/* Handle cases here where a reset is needed */ 
/* before next loop to maintain consistency */ 
/* (ie. leave partial order consistency work */
/* for the boundary between stacks for later.)*/
if (resetlpair & (topC>0)) then

do; /*must move context back to stack W*/ 
call POP((c,d) from stack C ); 
call PUSH( (c,d) on to stack W );
/*Next loop will "comb-up" the */
/* context just added. */

end;
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Stepl9: /* Close Main Loop and Print Output*/
End looptillnearempty;
©utputstage: do; 
if (topC=0)
then put skip list('braid is the identity'); 
else put skip list ('braid is not trivial.');

end outputstage; 
end C0MB3; 

end comber;

End of Combing Algorithm for WP(B(n+l))

V.D Combinatorial Analysis of Combing Algorithm

Analysis still in progress. Problem; proof falls 
into twenty-three cases, each requiring a closure proof 
(for no more cases.) Even then, each case will have a 
difference equation inter-related with the others; 
even if they prove decomposable, the distributions of 
initial words, over which they operate has to be 
determined. Even asymptotically, this is not uniform 
and requires more time.

152



www.manaraa.com

Combing Algorithm for B(rH-l)

The Monte Carlo analyses will demonstrate the 
irregular behavior, especially the enumerations over 
long words.

V.E Monte-Carlo Analysis of Combing Algorithm

Measures Used;

AVCOMBEND = average size of topC at end-of-run 
(when exit occurs from the main loop.)

AVCOMBALL = average size of all topC (during all 
stages in progress.) Actually, this is the average for 
all times through the main loop.

AVWORKALL = average size of all topW.

Note; AVWORKEND=0 since stack W is empty (as a 
loop exit condition.)

MXCOMBEND = Maximum topC at end-of-run.

MXSUMALL *= Maximum of all stack sums (ie. 
topC+topW) for all times through the loop (as well as 
end-of-runs.)
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Note: MXSUMEND=MXCOMBEND since topW=0 at
end-of-runs.

Note: All these measures are in number of
integers used. So the above values are two times the 
number of pairs stored in the respective stacks used.

Combing Statistics for: n=2

n=number of generators , l=length of braid word
1=2 H II 1=6 1=8

1AVCOMBEND j 
1I .

2.00 1j 4.462 1j 7.381 
1

10.065 |
1
1AVCOMBALL |
1I .

1.00 1j 3.143
1

| 4.845
1

6.152 |
1
1AVWORKALLj
1I „

1.00 1j 6.750 
1

1j 11.609 
1

15.370 |
1

MXSUMEND |
11 «

4 1j 20 
1

1j 40
I

60 |
1
1MXSUMALL | 
1

4 1j 28
1

1j 64 
1

100 |
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For n=2, MXSUMEND=MXSUMALL for lengths m = 2, 4, 6, 
and 8. Their corresponding worst case braid-words were:

m=2 
m=4 
m=6 
m=8

Combing Statistics for: n=3

n=number of generators , l=length of braid word
v 1=2 1=4 1=6

1AVCOMBEND j 
11 -

2.00 | 4.423
1

1j 7.511 
1

1
1AVCOMBALLj 
1 «,

1.00 1| 3.709
1

1| 4.709 
1

I
1AVWORKALL j 
1i _

1.00 1j 6.234
1

1j 10.649 
1 1=8

1
MXSUMEND | 

1
4 1| 20 

1
1| 60 
1

partial answer | 
148 j

1
1
1MXSUMALL j .4 1| 28 

1
1
1 76 
1

partial answer | 
184 |

1

11
2211

222211
22222211
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For n=3, MXSUMEND=MXSUMALL for lengths m = 2, 4, 6, 
and 8. Their corresponding worst case braid-words were:

m=2 | 11
Im=4 I . 2211

m=6 | 332211
Im=8 | 3'23'23'211 =partial answer

Combing Statistics for: n=4

n=number of generators , l=length of braid word
1=2 1=4 . 1=6

1AVCOMBEND j 
11 .

2.00 1| 4.343 
1

1 1 j 7.296 j
1 1

1
1AVCOMBALLj
11 .

1.00 1j 2.464 
1

1 1 j 4.188 j
1 1

1
1AVWORKALL j
1

1.00 1| 5.913
1

| 9.7827 |
1 1

1MXSUMEND j 
1I .

4 1j 20
1

1 1 j 60 j
1 1

1
1MXSUMALL j 
1

4 1j 28 
1

1 1 1 76 j
1 1
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For n=4, MXSUMEND=MXSUMALL for lengths m = 2, 4, 
and 6. Their corresponding worst case braid-words were:

m=2 
m=4 
m=6

Combing Statistics for: n=7

n=number of generators , l=length of braid word 
1=2 1=4

AVCOMBEND

AVCOMBALL

AVWORKALL

MXSUMEND

MXSUMALL

2.00 | 4.207 | 
1 1

1.00 1 1 | 2.139 |
1 1

1.00 1 1 j 5.476 j
1 1

4 1 1 1 20 j 
1 1

4 1 1 1 28 |
1 1

11
2211

332211
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For n=7, MXSUMEND=MXSUMALL for lengths m = 2 
Their corresponding worst case braid-words were:

m=2 
m=4

11
2211

and 4.
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One further enumeration was carried out to note 
the worst case strings of length eight and three 
generators.

m=8 , n=3 
String MXSUMEND MXSUMALL

| 2222222211 | 80 1 136 |
| 3322222211 | 148 1 168 1
| 2 '332222211 | 168 1 196 |
| 2313 12222211 | 184 | 200 |
| 2 ' 2'33222211 | 204 | 264 |
| 3 12231222211 | 228 1 296 |
| 223'31222211 . | 236 | 308 |
| 33213322211 | 240 1 340 |
| 23 1223122211 | 296 1 --- 1
| 3'23'23‘22211 | 316 1 384 |
| 2231223'2211 1 --- 1 420 |
| 23'23'23'2211 | 372 I --  |
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VI.0 Lisa1s Algorithm

VI.A Lisa Braids

Def: A Lisa braid is an unpermuted braid, all of
whose 2-subbraids are reducible to the identity.

Example: 131'3' is a Lisa braid. 
Example: 1 12'211111221 is not a Lisa braid.

1 2  3
1 2  3
11111111 2 11111111 3 111111 

2 3 1
2 3 1
2 1 

111111 2 11111111111111111 
1 2
1 2 3
1 3
111111111111111 3

1 3
2 1 3
2 1 3
2 1 3

111111 2 111111 3
1 2  3
1 2 3
1 2  3
1
11111111111111111111111111

1
2 3 1
2 3 1

111111 2 11111111 3 111111 
1 2  3

1 2  3
1 2  3
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The above is not a Lisa braid because the
1-2-subbraid (ie. the subbraid composed of strands 1 
and 2) is nontrivial, specifically being l'l' or 
equivalently, [1 2][2 1]. The 1-3-subbraid and the
2-3-subbraid are trivial.

Note: Testing a 2-braid to determine if it is
trivial requires logspace and linear time on a Turing 
Machine. Essentially, one sweep is made of the input 
tape, counting occurrences of 1' as -1 and 1 as +1. If 
the final sum is zero, the braid is the identity.

Note: To determine which braids are Lisa braids,
the standard braid notation cannot be used directly 
because the specific strand numbers are not specified 
along each step (or generator) in the braid word. So 
this notation loses track of the strands and the 
subbraids are soon no longer apparent.

The L. 0. James notation follows the strands 
exactly. In fact, the James notation specifies the 
very pairs that are used. Any two strand subbraid (for 
instance a and’ b) can be constructed by picking off all 
pairs [a b], [b a], [a -b], and [b -a] sequentially, in 
the exact order that they occur.
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Finally, to determine if a two strand subbraid is 
the identity, we need only count [a b] or [b a] as +1 
and count [a -b] or [b -a] as -1. If the final sum is 
zero, then the subbraid is trivial.

If we simultaneously have (n)(n-l)/2 counters, 
then if all of them are finally zero, the braid is a 
Lisa braid.

VI.B Lisa's Algorithm

Sketchy Version 
Stepl: Read braid word W;

Step2: Convert to L. 0. James Notation;

Step3: Using (n)(n-l)/2 counters, sequentially count
off each pair and accordingly add +1 or -1 into 
the proper counter.

Step4: If all (counters=0)
then print 'This is a Lisa braid.'
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Note: Since n is fixed beforehand, the n(n-l)/2
is not of real significance.

Note: The James notation requires linear space.
v

To alleviate this gross waste of space, we can develope 
one James notation pair at a time, use it in the 
computation, and then save space by not storing it. 
This gives the final version of the program below:

Lisa's Algorithm 
Stepl: Read braid word W=ala2...am?

Step2: Set VECT0R=<1,2,...,n+l>;
/* This is the strand recording vector.*/

Step3: Set COUNTERS( l:n , l:n ) = 0?

Step4: LOOP: DO I = 1 TO m ;
/* take i'th generator of W */
GEN = ai ;
STRAND1 = VECTOR(GEN);
STRAND2 = VECTOR(GEN + 1);
IF ( GEN is a positive generator) THEN 

COUNTERS(STRAND1,STRAND2) =
COUNTERS (STRAND1,STRAND2) + 1 ,*

ELSE
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COUNTERS(STRAND1,STRAND2) =
COUNTERS(STRAND1,STRAND2) - 1 ?

ENDIF?
/* now apply action of generator on */
/* strand order vector */
ITEMP•= VECTOR(GEN) ;
VECTOR(GEN) = VECTOR(GEN + 1) ;
VECTOR(GEN + 1) = ITEMP ?

END LOOP?
/*NOTE: In the above code, [i j] and [j i]*/ 
/* cases are treated as distinct in the */ 
/* counter sums. This saves time. In the */ 
/* final step, counters (j,k) and (k,j) */
/* are added together, giving the correct */ 
/*values. */

Step5: /* final count test */
KLOOP: DO K = 1 TO N?

JLOOP: DO J = K TO N;

IF (COUNTERS(J,K) + COUNTERS(K,J)
= 0 ) THEN ? /* OK CASE */

ELSE
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DO?
PRINT, W 'IS NOT A LISA BRAID'?
STOP;

END? .
ENDIF;

END JLOOP;
END KLOOP;
PRINT, W 'IS A LISA BRAID'?
STOP?

Note: We need not test if a braid is permuted.
All Lisa braids are unpermuted (because even a single 
transposition would result in two strands not being an 
identity 2-braid.)

VI.C Analysis of Lisa's Algorithm

VI.C .1 Worst Case Analysis

Space: VECTOR requires (n+1)*log(n+l) bits.
COUNTERS requires ((n)(n-l)/2)(log m) bits.
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Since n is assumed fixed, this gives a logspace 
worst case behavior. The exact worst case is bound is 
far below this figure but this will suffice.

Clearly, this algorithm requires logspace.

Furthermore, if n is very large, we can represent 
the counters as a linked list which can be bounded in 
storage requirements by min[(n)(n-l)/2*logm , Smlogm.]

s

The Smlogm is an overestimate of the upper bound for a 
binary tree having five fields: left and right links,
both strand numbers, and the actual counter itself. 
This model operates on the USE principle; each time a 
new i-j-pair is encountered, a new leaf is inserted 
with a counter for that pair. In fact, by using a 
clever hashing function, we can reduce this further (as 
well as reduce time.)
Time: n steps to set VECTOR to 0.

0(n**2) steps to clear the counters.
O(m) steps in the main loop.
0(n**2) steps to test the counters.
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So the algorithm runs in linear time.

Generally, n is not of concern; however, if n is 
very large relative to m, then using binary trees (with 
a partial ordering of nodes) runs into 0(mlog(n**2)) =
O(mlog(n)) time.

Note: An average case analysis is unnecessary
because even the worst case analysis is better than can 
be believed.

Note: This general algorithm is much faster than
the Lipton-Zalcstein-Burau algorithm for B(4).

Unfortunately, this algorithm is not a sufficient 
condition test for identity braid .

VT.D Proof: Necessary but Almost Sufficient

Thm: Every identity braid is a Lisa-braid.

Proof1: The null braid is a Lisa-braid (trivial,
since all counters are zero.)
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All free relators are Lisa braid.

All commutative braid relators (eg. 131*3') are 
Lisa braids.

All length-six braid relators (eg. 1212'1'2') are 
Lisa braids.

If a braid is a Lisa braid, then the insertion or 
deletion of a braid relator will result in a Lisa 
braid. The argument here is based on counters (ie. 
0+0=0 and 0-0=0.) Since this construction generates all 
identity braids, all identity braids are Lisa braids.

QED1

As an alternate proof (using contradiction):

Proof2; Assume a braid is not a Lisa braid. Then 
two strands exist which cannot be unraveled. By adding 
on the remaining strands, those two strands will still 
not be ravelable. If a braid cannot be unraveled, then 
it is not an identity braid.
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QED2

Unfortunately, the converse is not true.

Thro: There exist Lisa braids which are not
reducible to the identity braid.

Proof: (By counterexample:)

The braid 112'2'2'1'1'222111 is a Lisa braid but 
not an identity braid. This is also the smallest known 
case of one.

169



www.manaraa.com

Lisa^ Algorithm

Picture of l 12'212'1'1'222111
2 3
2 3
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2 3 1
2 3 1
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2 . 1  3
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2 3
2 3
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1
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3
3
3
3
3
3
3
3
3
3
3
3

1
1

111111

One can prove this is a Lisa braid by either 
pulling out one strand (3 cases) or by using the 
algorithm. The braid is clearly non-trivial (can be
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proven by heuristics, algorithms, invariant, etc.)

As a alternate example of a non-identity Lisa 
braid consider: 111112222221'1'2'2•2*2'2'2'1'1'1'.
This was the first one discovered. (QED)

t

VI.E Final Notes

Lisa's algorithm could possibly be fixed (to 
satisfy sufficiency) by analyzing the categories of 
counter-example cases. Unfortunately, the ones 
described are among the shortest and enumeration would 
be impossible with the present generation of computers. 
Hours of human labor were required to get a number of 
categories. Winding numbers are not sufficient; there 
are other categories with bundles of strands which do 
not fit the nice model of the counterexamples shown. 
Unfortunately, no proof of completeness has been worked 
out yet. Despite the large number of classes, these 
counterexamples are proportionally extremely rare. If 
categorized in easily detected classes, this may be the 
first logspace-algorithm for WP(B(n)) for all n.
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As a last attack on the logspace issue, a new 
algorithm is still being designed which is strictly 
logspace (despite much wasted time (presently quadratic 
time.)) Unfortunately, this algorithm has many cases 
which have not been worked out yet. It is based on a 
number of theorems from the theory of functions.
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VII.0 Other Notations and Presentations

VII.A < a , b ; a**3 = b**2 > Algorithm

Using the < a , b ; a**3 = b**2 > presentation, 
we have the following algorithm for WP(B(3)):

The a**2=b**3 Algorithm 
PROCEDURE A3B2BRAID;
Assiime input word is

in form W=(a**kl)(b**k2)(a**k3)...(b**kn);
Set CounterA =0; Set CounterB=0;
Start Turing Machine head (TMH) on

leftmost generator; 
m345: loop until (TMH moves off word on right);

Do Case
CaseltIF ( exponent k>0mod3 and TMH=a) then 

do;
CounterA = k - kmod3 +CounterA; 
Leave a**(kmod3) in place of a**k; 
end;

Case2:IF ( exponent k=0mod3 and TMH=a) then 
do;
CounterA = k +CounterA;
Remove a**k off tape;
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Do all cancellations between
the two boundaries of deleted 
term;

Set TMH in position; 
end;

Case3:IF ( exponent k>0mod2 and TMH=b) then 
do;
CounterB = k - kmod2 +CounterB;; 
Leave b**(kmod2) in place of b**k; 
end;

Case4:IF ( exponent k=0mod2 and TMH=b)'then 
do;
CounterB = k +CounterB;
Remove b**k off tape;
Do all cancellations between

the two boundaries of deleted 
term;

Set TMH in position; 
end;

End Case;
Move TMH right; 

end loop m345;
Comment: Final test.
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IF ((CounterA=0 and CounterB=0 and Tape is empty) or 
( (CounterA/3) + (CounterB/2) =0) )

THEN PRINT 'IDENTITY•;
ELSE PRINT •FALSE•?

END A3B2BRAID;

To see the process involved, note that counters A 
and B record only the a**3 and b**2 chunks because they 
can commute over the opposite generators, respectively.

Note that the modulo-residues will remain until a 
nearby cancellation removes terms and starts a possible 
chain reaction of cancellations.

Theorem: This algorithm operates in linear space
and time.

Proof: Probability( ab or ba at a given position
in the input string) = 1/2. So long strings of a 1s or 
b's. are "very'1 rare (exponentially decreasing relative 
•to length.) So the a**k's and b**k's occur linearly 
often (relative to the average initial input length.)
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Probability of an a-string leaving a residue is 
2/3. For b, it is 1/2. So, the TMH (as it moves 
right) leaves a linearly long trail of residues. The 
probability of cancellation at one point is 1/2 and 1/3 
respectively (so that still keeps the trail linear.) 
Finally, the • probability of chain-cancellations 
decreases exponentially with respect to the number in 
the chain (in fact, the alternating a's and b's gives 
the chain exponential a form like
(1/2)**k*(2/3)**(k+constant) where k is the number of 
ab alternations in the chain.) So, the trail is linear 
space. The algorithm is linear time because 
cancellation occurs only once for any symbol and 
cancellation is refused linearly many time.

(QED)
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VIII.0 Birman-Hilden Algorithm

A new version of the Artin algorithm was under 
developement, using a reduction based upon the 
Birman-Hilden theorem (ie. adding a contracting rule 
a(i)**2 to the TUPLE'S.) As noted in the chapter on the 
Artin algorithm, this almost never occurs (ie. TUPLE 
rarely has as square term.) This could probably be 
shown not to ever occur; this would offer an insight 
into an alternate proof for the Birman-Hilden 
isomorphism result. Unfortunately, this cancels any 
benefit from using this reduction in B(n+1) for n 
greater than two. Therefore, the program was not 
implemented.

Note: For B(3) significant savings do occur.
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