
www.manaraa.com

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.The sign or “ target” for pages apparently lacking from the document
photographed is “Missing Page(s)” . I f it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of “sectioning” the material has been followed. It is
customary to begin filming at the upper left hand comer of a large sheet and to
continue from left to right in equal sections with small overlaps. I f necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

University
Microfilms

International
300 N. Zeeb Road
Ann Arbor, Ml 48106

www.manaraa.com

www.manaraa.com

8515647

N ajarian, John Panos

INVESTIGATIONS OF BRAID GROUP ALGORITHMS

City University of New York PH.D. 1985

University
Microfilms

International 300 N. Zeeb Road, Ann Arbor, Ml 48106

Copyright 1985

by

Najarian, John Panos

All Rights Reserved

www.manaraa.com

www.manaraa.com

INVESTIGATIONS OF BRAID GROUP ALGORITHMS
by

• John P. Najarian
A dissertation submitted to the Graduate Faculty
in Engineering in partial fulfillment of the
requirements for the degree of Doctor of
Philosophy, the City University of New York

1985

www.manaraa.com

COPYRIGHT BY
JOHN P. NAJARIAN

1985

ii

www.manaraa.com

This manuscript has been read and accepted
for the Graduate Faculty of Engineering in
satisfaction of the dissertation requirement
for the degree of Doctor of Philosophy.

date Chairman of the Examining Committee

/ (
date

i
VExecutive Officer

Professor Michael Anshel, Mentor

Professor Leon F. Landovitz_____

Professor John Moyne_____________

Professor Kenneth McAloon_______

Professor Peter Stebe

Supervisory Committee

City University of New York

i < i111

www.manaraa.com

Abstract

INVESTIGATIONS OF BRAID GROUP ALGORITHMS
by

John P. Najarian
Adviser: Professor Michael Anshel

The classical Artin algorithm for the word problem
for braid groups is shown to have an exponential space
and exponential time worst case. Monte Carlo
experiments and enumerations show that the average case
is non-linear (but appears to be a low order
polynomial) for Artin's algorithm. Trends and patterns
are analyzed.

Garside's algorithm for the word problem is then
analyzed with respect to average-' and worst cases.
Statistical evidence shows that the classical Garside
algorithm has exponential space growth with respect to
the number of braid strands. For braids with more than
six strands, this algorithm easily exceeds the storage
capacity of the present generation of mainframe
computers. Many interesting properties are proven
about the word diagrams of Garside's algorithm.

www.manaraa.com

A variant of Garside1s algorithm is proven to
operate in non-deterministic linear space on a Turing
Machine in the average and worst cases. In
deterministic form, this algorithm requires at most
quadratic space on a Turing Machine.

The Burau representation is used to construct
other algorithms. A complexity-theoretic line of
attack for the famous faithfulness conjecture of the
Burau representation is demonstrated. The word problem
for B(3) is proven to require logspace.

A variant of the Luginbuhl combing algorithm is
designed for solving the word problem for braid groups.
A brief analysis of it follows.

A new algorithm is designed for-nearly solving the
word problem for braid groups. This algorithm operates
in log-space for all B(n) but it accepts some rare
non-identity braids. Some counterexamples are shown.

The word problem for B(3) can be solved in linear
time but with .linear space usage.

v

www.manaraa.com

Acknowledgements

I wish to express my appreciation to the Computer
Science Faculty of City College and the Graduate School
for my education.

Foremost recognition belongs to Professor Michael
Anshel for the careful reading, criticism, and
supervision of this thesis. Before the thesis, his
profound understanding, analytic lectures, and
elucidating conversations provided an atmosphere of
inquiry and research. I only hope I could retain a
fraction of it. In that respect, thanks go to Prof.
William Gewirtz for introducing me to the first half of
Computer Science.

I am greatly indebted to Professor Leon Landovitz
for the support, guidance, and concern he has shown in
these last few years.

Professors John Moyne, Ken McAloon, Peter Stebe,
Daniel Gandel, and Jack Fenichel deserve my thanks in
many respects., both for education provided and
criticisms given.

vi

www.manaraa.com

I wish also to thank my brother for the long hours
he waited to have supper with me. Finally, I wish to
thank God for providing all our needs out of his
abundant generosity.

t

This thesis had one casualty; a dear cousin of
only half my age, named Lisa. She waited for its
completion so I could visit her. A few months ago,
divine providence saw it fit that I should be one of
her pall bearers. To her, I dedicate the theorem
bearing her name.

v n

www.manaraa.com

CONTENTS

CHAPTER 1.0 PRELIMINARIES 1
I.A Group Theoretic Concepts 1
I.B Turing Machines and Complexity Concepts . 4
I.C Bounds on the Complexity of the Word

Problem for Braid G r o u p s 12
I.D The Growth Rate of the Braid Group

Languages................................. 39

CHAPTER II. 0 ARTIN'S ALGORITHM................... 45
II.A Exponential Worst Case for Artin's

Algorithm................................. 48
II.B Experiments in the Average Case for

Artin's Algorithm 75
II.C Analytical Results of Artin's

Algorithm's: Average C a s e 80
II. D An Interesting Note 85

CHAPTER III.O GARSIDE'S ALGORITHM FOR THE WORD
PROBLEM IN B (n + 1) 86

III.A Definitions for the Garside Algorithm . 86
III.B The Xi-Theorem for the Garside Algorithm 88
III.C The Garside Algorithm 90
III.D Turing Machine for a variant of Garside's

viii

www.manaraa.com

Algorithm 94
III.E Analysis of the Garside Algorithm . . . 98
III.F Analysis of Word-Diagram Growth 101
III.F.l Three Complexity Measures 101
III.F.2 Relationships between NUMEQ and the

other two 101
III.F.3 The relation between NUMNODE and

NUMEDGE 105
III.F.4 Some Computed Combinatorics of

Word-Diagrams 106
III.F.5 A Worst Case for Word-Diagrams:

Fundamental Words 109
III.F.6 Partial Results Toward the Factorial

C o n j e c t u r e 110
III.F.7 Important Corollaries to the Factorial(n)

C o n j e c t u r e 112
III.F.8 Asymptotics of Word Diagrams . . . 113
III.F.9 The Word Diagram as a Poset 115
III.F.10 Construction of Worst Case Complemented

Poset with Bounded Maximal Valence . . 116
III.G The Word Diagram: Computational Aspects 116
III.G.l Simple Closure Algorithm 117
III.G.2 Simple Creation-Closure Phase

ix

www.manaraa.com

A l g o r i t h m 120
III.G.3 Backpath-Closure and Creation

A l g o r i t h m 121
III.G.4 Creation-Deletion Algorithm 121
CHAPTER IV.0 BURAU REPRESENTATION ALGORITHM(?)

FOR B(n+1)...................... 122
IV.A Burau Representation.................. 122
IV.B Burau Representation Algorithm(?) . . . 124
IV.B.l Complexity of the A l g o r i t h m131
IV.C The Lipton-Zalcstein-Burau Algorithm . . 132
IV.D Word Problem for B(3) is Solvable in

Logspace 133
IV.E The Burau Conjecture: New Insights . . 133
IV.F Previous Results Toward the Burau

Conjecture................. 134
IV. G Partial-Computation for Faithfulness

T e s t i n g 137
IV.H Lie Ring Representation Algorithm for

B (4)139

CHAPTER V.O COMBING ALGORITHM FOR B(n+1) . . 140
V.A Braid Word Formalism.................. 140
V.A.l An Example of the James Notation . . . 140
V.B More Definitions141

x

www.manaraa.com

V.C The Combing A l g o r i t h m 142
V.C.l N o t e s 142
V.C.2 The Combing A l g o r i t h m 143
V.D Combinatorial Analysis of Combing

A l g o r i t h m152
V.E Monte-Carlo Analysis of Combing

A l g o r i t h m153

CHAPTER VI.0 LISA'S ALGORITHM 160
VI.A Lisa B r a i d s 160
VI.B Lisa's Algorithm 162
VI.C Analysis of Lisa's Algorithm............. 165
VI.C. 1 Worst Case A n a l y s i s 165
VI.D Proof: Necessary but Almost Sufficient . 167
VI. E Final N o t e s 171

CHAPTER VII.0 OTHER NOTATIONS AND PRESENTATIONS 173
VII.A < a , b ; a**3 = b**2 > Algorithm . . . 173

CHAPTER VIII.0 BIRMAN-HILDEN ALGORITHM 177

CHAPTER IX.0 REFERENCES 178

xi

www.manaraa.com

I .0 Preliminaries

I.A Group Theoretic Concepts

Here we define a group in terms of generators and
defining relators. A presentation P is a pair <A ; R>
such that:

A is a set of generating symbols a[i] and their
uniquely associated inverses (denoted a[i]'.)

R is a set of finite words (called defining
relators) formed by elements of A.

The inverse of a word w=a[l]a[2]...,a[i]..a[k]
(where a[i] is an element of A) is a word
w'=a[k]l...a[i]'...a[2],a[l]1. We observe that
a[i),l=a[i). Implicitly assumed in R (but rarely
written) are a. set of relators g'g and gg' (called free
relators), for every generator g. Under a presentation
P and given two words u and v (from alphabet A), we say

1

www.manaraa.com

Preliminaries

u is reducible to v iff u can be transformed into v
after a finite sequence of insertions or deletions of
relators and their inverses. The group. G being
represented has as its elements, the equivalence
classes of words (from alphabet A) under the
reducibility equivalence relation. Concatenation of
representatives is the group operation. A complete
discussion of groups expressed in terms of generators

\
and defining relators can be found in Magnus, Karrass,
and Solitar[1966].

The algebraic braid group was introduced by
Artin[1925]. The braid group B(n+1) is the group
corresponding to the presentation <s(l),s(2),...,s(n) ;

s(i)'s(i) = s(i)s(i)' = 1
s(i)s(j) = s(j)s(i) iff | i - j | > l
s(i)s(i+l)s(i) = s(i+l)s(i)s(i+l) for all i,j. >

For alternate interpretations of B(n+1) as a
topological structure, refer to Birman[1975],
Magnus[1974], Stillwell[1980], or Moran[1984].

2

www.manaraa.com

Preliminaries

A group of whose presentation has only free
relators and n generating symbols is called a free
group of rank n (denoted F(n) ,.)

The fundamental algorithmic problem of ' group
theory, the word problem, was defined and investigated
by Dehn[1911].

The word problem for a group G (denoted WP(G)),
given in terms of generators and defining relators, is
the problem of determining if a word w in the
generators can be reduced (ie. transformed by
insertion and deletion of relators and their inverses)
to the identity word. The set of such words which
reduce to the identity word is called the group
language of G (denoted GLA(G)) under that presentation.

It will be convenient to describe the group
language of the free abelian group on one generator as
LEQ., which is the language composed of all words w
(from alphabet {0,1}) such that the number of zeros
equals the number of ones.)

3

www.manaraa.com

Preliminaries

We remark that GLA(F(n)) have been investigated as
the two-sided Dyck languages on n letters (ref.
Harrison[1978], page 312-325.)

By the growth rate of a language, we mean the
function f(m) whose value denotes the number of words
of length m which are reducible to the identity element
(under the given presentation.)

I.B Turing Machines and Complexity Concepts

The Turing Machine serves as a useful modei of
computation in that it use allows us to measure space
and time utilization (ie. the computational
complexity) of algorithms and, more abstractly, of
problems. Storage space in our .model of Turing
Machines consists of a read-only input tape (containing
the input data), an output (generally 2-valued), and a
number of work tapes (for intermediate computations.)
Each tape can only be accessed through a head which can
read and write from one cell on that tape at any
moment. In that moment, the head can move left one
cell or move right one cell or stand still. This so
far describes the storage and access method; the exact

4

www.manaraa.com

Preliminaries

formal control system of a Turing Machine is described
below.

A Turing Machine T is an octuple

T=<Q,I,W,0,D,NS,qO,qF> such that:

i. Q is a set of states

ii. I is a set of input symbols

iii. W is a set of work tape symbols

iv. 0 is a set of output symbols {T, F}

v. D is a set of directions in which to
move a head {L,R,S}

vi. NS is a next move function
NS: QxIxW — > QxDxWxD

vii. qO in Q is the start state

viii. qF is the final state

5

www.manaraa.com

Preliminaries

By the finite control of a Turing Machine T, we
mean the function NS(q,i,w) which characterizes the
rules of computation specific to T, expressing the
algorithm by which T will operate.) The finite control
can not be modified at execution time? likewise, it is
generally not treated as a computational resource.

The Turing Machine starts in state qO, with
input-tape-head pointing to the left boundary of the
input, which is on the input tape. The work tape
generally starts with blank symbols (denoted B) and the
work-tape-head points to it.

The NS function (based on those of Hopcroft and
Ullman[1968]) is generally described as a set of
function values. For instance, NS(q,i,w)=<q2,di,w2,dw>
signifies: if the Turing Machine is in state q and the
input-tape-head points to symbol i (on the input tape)
and the work-tape-head points to symbol w, then have
the Turing Machine enter state q2, with i2, move
input-tape-head one cell in direction di, replace the
value of the wprk cell (ie. the cell pointed to by the
work-tape-head) with w2, and move work-tape-head one
cell in direction dw. This process is repeated until

6

www.manaraa.com

Preliminaries

the machine enters a final state. In a step before
entering the final state, the output (ie. T or F) is
placed on the work tape. T stands for true, F for
false, L for "move left", R for "move right", and S for
"stay still". The work and tape heads move
independently. .

Below is a diagram of this machine model:

Input Tape 1 B | input | B | B | B
A

// input-tape-headI I
| finite |
j control ji i

1
1
1

1 11------- \ work-tape-head
\V

Work Tape 1 B | work data | B | B | B

An example of a Turing Machine for determining if
string l**k has even length is:

TPAR=<{qO,ql,qF}, {1,B}, {B}, {T,F}, {L,R,S}, NS,qO,qF>
such that.function NS is defined by:

NS (qO, B , B) - < qF , s , T , S >
NS (qO, 1 , B) = < qi / R / B , S >
NS (qi/ B , B) = < qF , s , F , s >
NS (qi/ 1 / B) = < qO , R / B , s >

7

www.manaraa.com

Preliminaries

Occasionally, we will use a natural programming
language for Turing machines in the manner of
Domanski[1982], as well as the octuple model given.

An alternate model of this Turing machine is the
two-input-head Turing Machine. Formally, a
two-input-head Turing machine is a Turing Machine T2
with the following octuple structure:

T2=<Q,I2,W,O,D,NS2,q0,qF> such that:
12 = Ixl where:
I is a set of input symbols
NS2 is a next move function

NS2: QXI2XW — > QxD2xWxD
D2 = DxD where:
D is a set of directions in which to

move a head {L,R,S>

and all other terms correspond to those of the
single input head model.

The main difference between T2 and T is that T2
has two independently moving input heads. Each
execution of the next move function NS2 is determined
by the machine state, the work tape cell, and the two
input cells being scan by the two input heads (ie.
corresponds to 12.) The execution of the NS2 function

www.manaraa.com

Preliminaries

then results in the motion of both input heads in
independent directions (ie. D2's role), as well as the
standard Turing Machine operation on the work tape and
next state.

Below is a diagram of the two input head machine
model:

Input Tape | B | input | B | B | B
A A

/ I/ | input-tape-heads
//

\ work-tape-head
\ v

Work Tape | B | work data | B | B | B

Turing Machines which restrict input tape heads to
move only in one direction are called on-line;
otherwise, they are called off-line. For example,
Turing Machine TPAR is on-line. Since input tapes can
only be read, the space utilization of a machine is
determined by the amount of work tape (ie. number of

finite
control

www.manaraa.com

Preliminaries

work tape cells) used during the execution of that
algorithm. Time utilization can respectively be
defined as the amount of time required (expressed as
the number of instructions 'executed or moments spent)
to complete the execution of that algorithm. Both
space and time complexity measures can be expressed as
functions of the input length (or more broadly, the
problem instance.) Furthermore, both measures can be
qualified in terms of average utilization (ie. the
resource utilization of an arbitrary case) and worst
case utilization (ie. the case of maximal resource
use.) Problems and algorithms are called f(m)-space (or
f(m)-time) solvable iff their respective complexity
measures can be expressed as (or bounded by) a linear
function of f(m) where m is the length of the input (or
problem instance.) For example, a problem is log-space
solvable iff its space complexity is k*log(m) where k
is a constant. Turing machines which exactly require
time complexity m are said to operated in real time.
Other types of Turing Machines and their complexity
aspects are covered in Harrison[1978].

1.0

www.manaraa.com

Preliminaries

The notation in this section was conceived out of
the graphic constraints of the computer used. This has
resulted in cumbersome adaptation for notation. x**y
denotes exponential function x raised to the power y.

11

www.manaraa.com

Preliminaries

I.C Bounds on the Complexity of the Word Problem
for Braid Groups

Sometimes properties can be proven about groups
directly from the structure of the relators. In the
case of the braid group B(n+1), the following theorems
arise in such a manner.

Proposition 1: If w is a word in the braid group
language GLA(B(n+l)), then the number of occurrences of
inverse generators in w must be equal to the number of
occurrences of positive generators in w.

Proof; All relators are of one of the following
forms:

a 1 a , aa' , abab'a'b' , a'c'ac ..

Starting with the trivial word (which obviously
has as many inverse generators as positive generators),
any insertion or deletion of relators will preserve the
equality in number.

(QED)

12

www.manaraa.com

Preliminaries

Proposition 2: If w is a word in the braid group
language GLA(B(n+l)), then w must be of even length.

Proof; By proposition 1, for a word to be
trivial, it must have k inverted generators if it has k
positive generators. So it has length 2k, hence even.

As an alternate proof, note that the relators are
all of even length. Any insertion or deletion of them
will conserve parity.

(QED)

Proposition 2 may seem weak relative to the
Proposition 1; however, it is extremely useful in
trivial-braid enumerations because it can skip a whole
length category in the enumeration. Proposition 1
can't cause such clean jumps (unless much programming
machinery is added, which will still prove very costly
(in time complexity) without this proposition as a
first programming construct.)

The recognition problem for LEQ is the problem of
determining if an arbitrary word (composed of 0's and
l's) is in the language LEQ.

13

www.manaraa.com

Preliminaries

Lemma 1; The recognition problem for LEQ:
i. is solvable on an on-line Turing Machine.
11. requires at least log-space in (the worst

case) on an on-line single-input-head
Turing Machine. .

Proof: First, we need to show that a single head
on-line Turing Machine can solve this problem in
log-space. The proof is by construction.

/* TM-input-head starts at leftmost on input tape */
/* The work tape will be treated as a COUNTER. */

Put a ' + ' on the work tape as initial COUNTER ;
Loop Until (TM-input-head points to right-end) ;

If (TM-input-head points to * 1•)
Then CALL INCREMENT(COUNTER) ; /* by 1 */
Else CALL DECREMENT(COUNTER) ; /* by 1 */

. Move TM-input-head to right one step;
End Loop;

If (COUNTER = 0)
Then Print 'Word is in LEQ.';
Else Print 'Word is not in LEQ.';

14

www.manaraa.com

Preliminaries

Halt ?

For sake of completeness, the Increment and
Decrement Functions can be implemented as shown below.
These functions only increment and decrement the
COUNTER (on the work tape) by one. Note that these
functions are a simple but have complex Turing machine
representations because the COUNTER is represented by
an absolute value of a count, followed by a sign
character (ie. + or -.)

/* TM-work-head starts at rightmost on input tape */
/* The work tape (called COUNTER) will start off */
/* as a string of zeroes, enclosed in B's. */

/* Increment by 1 Case */
If (Input-head points to '11

. and COUNTER sign is negative)
Then If (COUNTER=0)

Then do;
Change sign of COUNTER to positive?
C0UNTER=1;
RETURN to main program?

15

www.manaraa.com

Preliminaries

end;
Else do;

CALL DECREMENT(COUNTER);
RETURN to main program;
end;

Else;
Loop Until (TM-work-head points to 10') ;

If (TM-work-head points to '1')
Then Replace '1' by 'O1;
Move TM-work-head to left one step;

End Loop;
Replace '0' by '1';
Move TM-work-head to right until end-marker;
/* End of Increment by 1 Case

/* Decrement by 1 Case
If (Input-head points to 'O'

and COUNTER sign is negative)
Then If (COUNTER=0)

Then do;
Change sign of COUNTER to negative
COUNTER=-l;
RETURN to main program;

www.manaraa.com

Preliminaries

Else do;
CALL INCREMENT(COUNTER);
RETURN to main program;
end;

Else;
Loop Until (TM-work-head points to '1') ;

If (TM-work-head points to '01)
Then Replace '01 by 11';
Move TM-work-head to left one step;

End Loop;
Replace 11' by '01;
Move TM-work-head to right until end-marker;
/* End of Decrement by 1 Case */

/* Counting done in binary. */

For the sake of rigorous formality, the above
algorithm corresponds exactly to the following Turing
Machine;

T=<Q,I,W ,0,D ,NS,qO,qF> such that:
Q ={qO,gl,qtest,qtestA,qnotO,qeqO,qdec,qinc,qmove,qF}
I = { 0 , 1 , B) where B signifies blank

17

www.manaraa.com

Preliminaries

W = { 0 , 1 , B , + , - }
0 = {T, F)
D = {L,R,S}
qO in Q is the start state
qF is the final state
NS is a next move function (given below)

NS (qO, 1 , B = < qi » s , + / s >

NS(qo, 0 , B = < qi / s , + / s >

NS (qi» 1 , + = < qinc , S / + / L >
NS (qi» 0 , + = < qtestA , S / + 1 L >

NS (qi/ B , + = < qtest , s ! + # L >

NS (qif B ' “ = < qtest , s t - 1 L >

CO55 qi/ 1 , " = < qtestA , s / - t L >

NS (qi/ o , - = < qinc , s / - / L >

NS (qtest, B , 0) == < qtest 1 s t 0 / L >

NS (qtest, B , 1) == < qF t s / F / S >

NS (qtest, B , B) == < qF I s / T / S >

Comment: Below are the increment-decrement routines.
0) = < qtestA , s , 0 , L >
0) = < qtestA , s , 0 , L >
1) = < qnotO , s , 1 , R >
1) = < qnotO , s , 1 , R >
B) = < qeqO / s , B , R >

18

www.manaraa.com

Preliminaries

NS
NS
NS
NS
NS
NS
NS

< geqOqtestA, 1 , B) =
qnotO, 0 , 0) =
qnotO, 0 , 1) =
qnotO, 1 , 0) =
qnotO, 1 , 1) = < qnotO , S
qnotO, 0 ,. +) = < qdec , S
qnotO, ! , -) = < qdec , S

, S , B , R >
< qnotO , S , 0 , R >
< qnotO , S , 1 , R >
< qnotO , S , 0 , R >

, 1 , R >
. + L >

L >
NS (qeqO, 0 0 = < qeqO , S 0 R >
NS (qeqO, 0 1 = < qeqo , S 1 R >
NS (qeqO, 1 0 = < qeqO , s 0 R >
NS (qeqO, 1 1 = < qeqO , s 1 R >
NS (qeqO, 0 + = < qinc , s - L >
NS (qeqO, 1 - = < qinc , s + L >
NS (qdec, 0 0 = < qdec , s 1 L >
NS (qdec, 1 0 = < qdec , s 1 L >
NS (qdec, 0 1 = < qmove, s 0 L >
NS (qdec, 1 1 = < qmove, s 0 L >
NS (qinc, 0 B = < qmove, s 1 R >
NS (qinc, 1 B = < qmove, s 1 R >
NS (qinc, 0 0 = < qmove, s 1 R >
NS (qinc, 1 0 = < qmove, s 1 R >
NS (qinc, 0 1 = < qinc , s 0 L >
NS (qinc, 1 1 = < qinc , s 0 L >

19

www.manaraa.com

Preliminaries

NS (qmove, 0 / — s < ql / L i CO V

NS (qmove, 0 t + = < ql , L , + , S >
NS (qmove, 1 / - = < ql , L , - , S >
NS (qmove, 1 / + = < ql , L , + , S >
NS (qmove, 0 f 0 = < qmove , S , 0 , R >
NS (qmove, 0 i 1 < qmove , S , 1 , R >
NS (qmove, 1 / 0 = < qmove , S , 0 , R >
NS (qmove, 1 / 1 = < qmove , S , 1 , R >
End-of-TM.

To demonstrate the operation of this
Machine, a simulation of its behavior (as
follows:

Turing
trace)

20

www.manaraa.com

Preliminaries

Trace of Turing Machine behavior on input 1110.
Input Tape State Work Tape
v v
1 1 1 0 q0 B B B B B B B
V V
1 1 1 0 ql B B B B + B B
V V
1 1 1 0 qinc B B B B + B B
v v
1 1 1 0 qmove B B B 1 + B B

V
1 0 ql B B B 1 + B B

V
1 0 qinc B B B 1 + B B

v
1 0 qinc B B B 0 + B B

v
1 0 qmove B B 1 0 + B B

v
1 0 qmove B B 1 0 + B B
v v

11. 1 0 ql B B 1 0 + B B
V V

1 1 1 0 qinc B B 1 0 + B B
V . V

1 1 1 0 qmove B B 1 1 + B B
v v

1 1 1 0 ql B B 1 1 + B B

21

www.manaraa.com

Preliminaries

v v
1 1 1 0 qtestA B B 1 1 + B B

v v
1 1 1 0 qnotO B B 1 1 + B B

v v
1 1 1 0 qdec B B 1 1 + B B

V v
1 1 1 0 • qmove B B 1 0 + B B

v v
1 1 1 0 B ql B B 1 0 + B B

V v
1 1 1 0 B qtest B B 1 0 + B B

v v
1 1 1 0 B qtest B B 1 0 + B B

V V
1 1 1 0 B qF B B F O + B B
Machine halts in final state qF.
Output symbol F signifies 1110 is not in LEQ.

Informal Argument of Lemma 1 (for On-line Case);

Informally, in the above Turing Machine, COUNTER
requires log(m) space at worst where m is the length of
the input string. This corresponds to the string l**m.
Note: 1**(m/2)0**(m/2) is the worst case of the
accepted words. The proof is essentially reducing the
recognition problem by the Turing Machine to a counter

22

www.manaraa.com

Preliminaries

principle.

The argument begins by showing log(j) space is the
minimum space possible to record numbers 0 through j.
Since the input string is scanned on-line, when the
input head has passed over any prefix l**(k), it must
be capable recording the exact number of ones, namely
k. Otherwise, if it did not have the capacity to
distinguish between every k (where 0<k<m), then there
would be two distinct values k and kl such that for
every word w :

(l**k)w would be in LEQ iff (l**kl)w is in LEQ
This would clearly violate the definition of LEQ
because w would have COUNTER values of -k and -kl
simultaneously, which is clearly a contradiction.
Hence, the on-line Turing Machine must be capable of
counting upto m exactly.

Note: the contradiction condition would also have
serious ramifications on the context-free nature of
(l**k)(0**k).

23

www.manaraa.com

Preliminaries

Formal Proof of Lemma 1 for On-line Case:

Sublemma: On-line counting of a string l**j
requires log(j) space on a single-head on-line Turing
Machine.

Proof of Sublemma: Assume a k-symbol alphabet for
the work-space of such a Turing Machine. Assume X
cells exist on that work tape. By definition, each

s

cell can hold exactly one symbol.

The question arises: How many symbol patterns can
be stored in X cells? From combinatorial theory (ref.
Liu[1968]), k**X patterns can be stored. So in X
cells, at most k**X different numbers can be stored.
If we use integer 0 and require counting by one (a
strict successor function constraint), then we can only
represent numbers from 0 to k**X-l. Let i=k**X. Then
we are saying, to count from 0 to i, we need log(i)
cells. To count a sequence of j ones on a Turing
Machine, we need log(j) space. The above log functions
are in base k.

24

www.manaraa.com

Preliminaries

Note: In changing the base of counting (ie. from
k to k'), we have log-sub-k'(j) =
log-sub-k(j)/log-sub-k(k'), so this is really just
dividing by a constant factor; hence, logspace
remains.

(QED to Sublemma)

So far, we have shown that log(j) space is needed
to count from 0 to j (with no gaps.) All that remains
is to show that the count (j) must be as large as m.

So, in our on-line Turing Machine for
1**(m/2)0**(m/2), as the head sweeps over l**(m/2), it
must use:

log(m/2)=log(m)-log(2)=0(log(m)). space. By the
above lemma, to have the correct count of ones,
log-space is absolutely required. Any fewer cells
would not be capable of recording this count. After
the midpoint (of 1**(m/2)0**(m/2)) is past, the
countdown would not cause any further growth. Note:
for the l**m case, the space requirement would be again
O(log(m).)

25

www.manaraa.com

Preliminaries

This count information is necessary because if at
any point in the input scan (say when l**k has been
passed over by the input) we should happen to lose any
count information, then the final output for the Turing
Machine would be the same for (l**k)w as (l**k2)w
(where w is any word and k not equal to k2.) So any
loss of count information would result in erroneous
outputs.

QED to Lemma 1 On-line Case

Theorem 1: The word problem for braid groups
requires at least log-space (in the worst case) on an
on-line single-input-head Turing Machine.

Proof: Using the necessary condition (of
Proposition 1), we can look at the problem in terms of
the language LEQ, the language composed of all words w
(from alphabet (0,1)) such that the number of zeros
equals the number of ones. Clearly, any.Turing Machine
can interpret a braid word in terms of LEQ words (under
the mapping s(i)— >1 and s(i)'— >0, where s(i) is a
positive braid generator) and furthermore, this
interpretation can be done in the finite store of any
Turing Machine model. So now a necessary condition for

26

www.manaraa.com

Preliminaries

the word problem for braid groups reduces to the
recognition problem for LEQ. Since LEQ is recognizable
on an on-line single head Turing Machine in log-space,
the word problem for braid groups requires at least
log-space in the worst case (on that model.)

QED to Theorem 1 On-line Case

Discussion:

For a single-head off-line Turing- Machine, the
situation appears to be similar in terms of the
worst-case. Counting can occur upto a certain value.
By the time that the midpoint is reached, a count of
the traversed side must be made. Assume we did not
count all of the ones but every kth one (k a constant)
in this one pass; then the space will be
O(log(m/k))=0(log(m).) Assume each pass counted k**i
where i is the pass number; then, for large k**i (ie.
close to m/2), the remainder in such a count would
require O(log(k**i)) which would be 0(log(m/2).) If we
left that remainder for further counting by smaller
chunks (say k**p where p<i), then to record the address
of that position where the remainder begins requires
log-space.

27

www.manaraa.com

Preliminaries

Unfortunately, all this proves is that standard
counting methods would fail to use less than log-space
on an off-line Turing Machine for the worst case ;
however, instead of k**i, there could possibly exist
other functions f(i) which, after many successive
passes, would cover all counts from 0 through m/2 (by a
conjunction of cases) and yet use less than log-space.
Such a system would very likely be nonoptimal in time
usage, moving the input head over sufficient scans to
collect sufficient partial results. No such class of
functions seems to exist and there is much intuitive
evidence of its' nonexistence but this remains to be
proven.

For the average space complexity of the on-line
single-head Turing Machine model, ' the situation has
been analytically solved (below) but the exact function
has not been resolved in terms of its' big-0 class.
Let w be an arbitrary word of length m over alphabet
(0,1). Let SP(w) = the maximal space used by word w on
the work-tape (which is just a counter.) SP(w) is
really the least integer greater than the log of the
counter value at it’s maximal point in the program run.
For example, SP(1011011110000)= log-sub2(5) = 3. Let

28

www.manaraa.com

Preliminaries

r=the value of the counter in the maximal step (ie.
r=2**SP(w).) The average case space usage of this
system can be computed by an expected value:

Average Space = ^ SP(w)*Probability(w being the word)
.over
all words w

The maximal counter value r may be interpreted as
the maximal value of the sequential sum of m
independent binomial random variables (values +1 and
-1). In other words, r is the maximum value of the
random walk of length m. The probability that such a
sum of length m would have a maximal value of r is:

Prob(m,r) = C(m,(m+r)/2)*2**(-m)
(according to Feller[1968], p74-75,87-89 or
Renyi[1970], p233.)

At this point, the problem adopts a new twist; if
the situation was as simple as presented so far, the
sum may be repartitioned as follows:

r=m
Average Space = ^ log(|r|) * C(m,(m+r)/2)*2**(-m)
(for words r=-m
of length m)

29

www.manaraa.com

Preliminaries

This classical random walk approach cannot be used
directly because a maximal value of r could still
result in a negative count below -r (resulting in
underestimation of space usage.) Instead, the problem
should be reformulated in terms of the absolute value
of the random walk. Let the probability that the
absolute value of such a sum (ie. random walk) of
length m (ie. m steps) would have a maximal value of r
be denoted as PA(m,r). With the absolute value
condition, the expected value becomes:

r=m
Average Space = ^5" log(|r|) * PA(m,r).
(for words r=0
of length m)

Clearly, PA(m,0)=0, so the sum can be assumed to begin
at r=l. Also the log(|r|) is really the least integer
greater than log(|r j).

At this point, we could compute the exact value of
PA(m,r) by a very lengthy derivation starting with the
fundamental assumptions of random walks and adding
conditions. For sake of brevity, this approach will be
avoided. Another method, based on taking differences

3 0

www.manaraa.com

Preliminaries

Prob (m,r)-Prob (m, r-1) seems semantically correct at
first but is erroneous because it neglects to consider
the cases of negative sums that go below r and r-1
respectively. . These negative cases are not
equiprobable in the r and r-1 case. Therefore, this
difference approach fails (as did all the other tested
reformulations in terms of Prob.)

One alternative is to approximate, of course
keeping track of whether the approximation is an
over-estimate or under-estimate. We know that
Prob(m,r) is greater than or equal to PA(m,r) because
Prob is unbounded for negative r while PA is. So we
can approximate the expected value in terms of
Prob(m,r) as:

r=m
Average Space < 2* log(|r|) * C(m,(m+r)/2)*2**(-m)
(for words r=l
of length m)

No simple method of resolving this to be
non-logspace has been found. Program runs show this is
sub-0(log(m)) but a direct proof via series
manipulation is not obvious.

3.1

www.manaraa.com

Preliminaries

Instead, using an approximation (due to Renyi page
234) :

Probability(Maximum >=r) =< 2e**((-r**2)/ (2m)).
V

As r grows, this function decreases exponentially.
By substitution into the average space inequality, the
average space of the single-head on-line Turing Machine
(for LEQ) can be shown to be less than log(m)-space.
Exactly what function it is has not been determined
yet.

For the average space complexity of the off-line
single-head Turing Machine, this issue remains open by
the same arguments of the worst case for the off-line
model (described above.) The issue is: can large
numbers of repeated scans collect enough fragmentary
information to completely determine membership in LEQ
and yet use less than log-space in each pass.

Lemma 2: The necessary condition for WP(B(n+l))
in theorem 1 requires no work-tape space on a
2-input-head Turing Machine (even with the on-line
condition.)

32

www.manaraa.com

Preliminaries

Proof: Proof by construction of an on-line
2-input-head Turing Machine which requires no workspace
and can still recognize LEQ.

/* TM-input-heads starts at leftmost on input tape*/

Loop Forever;
If (TM-input-headl points to right-end)
Then

/* Need to test if an excess of zeros.*/
Loop Until (TM-input-head2 points to '0');

If (TM-input-head2 points to right-end)
Then

Print 1Word is in LEQ.1;
Halt;

End-if;
Move TM-input-head2 right once;

End-loop-until;
/* Have at least one excess zero. */
Print 'Word is not in LEQ.1;
Halt;

End-if;
If (TM-input-headi points to '0')
Then ; /* Headl ignores input='0' */

33

www.manaraa.com

Preliminaries

Else
/*Since Headl hits a '1', Head2 must */
/* find a 'O'. */
Loop Until (TM-input-head2 points to '0');

If (TM-input-head2 points to right-end)
Then

Print 'Word is not in LEQ.';
Halt;

End-if;
Move TM-input-head2 right once;

End-loop-until;
/* Since head2 hit a 'O', all is ok. */
/* To prevent double counting, move again.*/
Move TM-input-head2 right once;

End-if;
Move TM-input-head to right one step;

End Loop-Forever;

For the sake of rigorous formality, the above
algorithm corresponds exactly to the following Turing
Machine:

34

www.manaraa.com

Preliminaries

T=<Q,I2,W,O,D,NS2,q0,qF> such that:
Q = {qO , qfindl , qfindO , qF}
12 = Ixl where:
I = { 0 , 1 , B } where B signifies blank
W = { B } '
0 = {T,F}
D = {L,R,S}
qO in Q is the start state
qF is the final state

NS2 is a next move function (given below)
NS2 (qo. <B B> r B = < qF / <s, S> t T
NS2 (qO, <1 1> • = < qfindO / <s, R> / B
NS2(qO, <0 1> ,B = < qO i <R, R> / B
NS2 (qO, <1 0> /•B = < q° 9 <R, R> f B
NS2 (qO, <0 0> r B = < qfindl 9 <R, S> / B

NS2 (qO, <0 B> , B) = < qO A CO V B , S>
NS2 (qO, <B 0> r B) = < qF , <S, S> , F , s>
NS2 (qO, <1 B> t B) = < qF , <S, S> , F , s>
NS2 (qO, <B 1> , B) = < qO , <S, R> , B , s>

NS2 (qfindO, <1 , 1>,B) = < qfindO, <S , R> /
NS2 (qfindO, <1 / 0>,B) = < qO , <R , R> /

NS2 (qfindO, <1 / B>,B) = < qF , <S

35

, S> 9

S>
S>
S>
S>
S>

, S>
, s>
, S>

www.manaraa.com

Preliminaries

NS2(qfindl, <0 , 0>,B) = < qfindl, <R, S> , B, S>
NS2(qfindl, <1 , 0>,B) = < qO , <R, R> , B, S>
NS2(qfindl, <B , 0>,B) = < qF , <S, S> , F, S>

The following example will demonstrate the
behavior of this Turing Machine.

36

www.manaraa.com

Preliminaries

Trace of Turing Machine behavior on input 110100.
(Note: A is head 1 and v is head 2.)
Input Tape State Work Tape
v
1 1 0 1 0 0 qO B
A A

V
1 1 0 1 0 0 qfindO B
A A

V
1 1 0 1 0 0 qfindO B
A A

V
1 1 0 1 0 0 q0 B

A A

V
1 1 0 1 0 0 qfindO B

A A

V
1 1 0 1 0 0 qO B

A A

V
1 1 0 1 0 0 qfindl B

A A

V
1 1 0 1 0 0 B qO B

A A

V
1 1 0 1 0 0 B qO B

A A

V
37

www.manaraa.com

Preliminaries

1 1 0 1 0 0 B qF T
A A

Machine halts in final state qF.
Output symbol T signifies 110100 is in LEQ.

(QED to Lemma 2)

Obviously, the average work-space usage of the
2-head Turing Machine is zero. So, this lowerbound is
not a very useful one.

Note: The analysis of the 2-input-head approach
does have one hidden flaw. In the real world, a head
(or a pointer) requires log(memory used) space to
record the position of an average cell. The assumption
that the lower bound due to theorem 1 fails because of
the addition of another head is not a real one; the
extra head requires logspace on any real machine.

Previous work on random walks over groups was
carried out by Kesten[1959]. His research was directed
toward the recurrence problem for the identity,
subgroups, and other events in random walks over
groups. His methodology was more probabilistic than

38

www.manaraa.com

Preliminaries

combinatorial. Later results in the countably infinite
Abelian case were developed by Kesten and
Spitzer[1965]. Our approach is more combinatorial and
concentrates on the maximal distances in random walks,
with an ultimate goal in the complexity issues.
Spitzer[1976] presented a theoretical but introductory
approach to random walks.

I.D The Growth Rate of the Braid Group Languages

The previous theorems establish an upper bound
result.

Lemma 3t There are at most C(m,m/2)*(n**m)
identity braid words of length m in B(n+1).

Proof: By proposition 2, m/2 generators will be
inverted (in an identity braid word of length m.) There
are C(m,m/2) ways to chose which m/2 positions will be
the inverted. Once inversion positions are selected,
the remainder of the problem is: how many ways can m
positions be filled (with replacements) using the (n)
generators. There are (n**m) selections. Hence,
C(m,m/2)* (n**m).

39

www.manaraa.com

Preliminaries

(QED to Lemma 3)

The above lemma demonstrates an upper bound on the
set, not an exact value. Using this value, the
probability of a word being an identity word is

PR(m,n) = C(m,m/2)* (n**m) / ((2*n)**m)

where (2*n)**m is the total number of braid words
of length m. The expression reduces to:

PR(m,n) = C(m,m/2) / (2**m)

A binomial expansion of 2**m contains C(m,m/2) as
the middle term, which means it is the largest in the
summation. So at this point, approximate analytic
methods may be too inaccurate; instead, a program
proves more helpful in approximating PR(m,n). First
computing the products term-by-term (using the
expression

PR(m,n)= (m / (4*1)) * ((m-1) / (4*2)) * ... *
((m/2+1) /(4*(m/2-1))) * ((m/2)/(4*m/2))

40

www.manaraa.com

Preliminaries

resulted in overflows near the center of the
product PR(m,n) for n=381; a far better approach is
the computation of F(m,n) = log(PR(m,n)). After
programming it, the function shows the following growth
rate:

m = 2 10 1000 14000 37000 60000 70000

F(m,n) = -.301 -.34 -1.29 -1.87 -2.08 -2.19 -2.22

Since F is log (PR), this is a terribly slowly
converging function (of course bounded by 0 and 1 due
to the binomial theorem.) Such a convergence is evident
(and provable by monotonicity and boundedness.) These
values are far above the actual values. These values
correspond to the true values for free abelian groups.
In conclusion, this corollary is far too weak to be of
statistical value but can act as an upper bound.

Note: In the above analysis, PR(m,n) finally
reduces to a function of m only. This is another
property by which the above differs from the braid

41

www.manaraa.com

Preliminaries

group. In B(n), as n increases, the ratio of identity
words to all words decreases.

As a lower bound on the number of identity words
of length m, the free group can be used (again, a weak
bound.) An identity word in the free group can be
expressed as:

W = wl w2 ... wk

where wi = a word composed only of generators

g and g' with an equal number of each.

Lemma 4: For k=l, there are n*C(m,m/2) identity
words of length m.

Proof: There are n choices for- generator g. Once
g is chosen, there are C(m,m/2) ways to distribute the
negative generators.

QED

Lemma 5: For k=2, there are
n*C((m-2),(m-2)/2)* (n-1)*C(2,1) +
n*C((m-4),(m-4)/2)*(n-l)*C(4,2) +

42

www.manaraa.com

Preliminaries

n*C(2,1)*(n-1)*C((m-2),(m-2)/2)
identity words of length m.

Proof: Follow the same process as k=l but split
into two subwords. Note that the n-1 prevents the
generator in w2 from being the same as in wl.

QED to Lemma 5

Note: for cases k=3,4,...m-1, the sums become
very complex and while still describable, the
expressions neither provide any deep insight, nor are
they apparently reducible to simpler ones.

• • •

For k=m, there are n*C(2,l)*((n-1)*c(2,1))**(
(m-2)/2).

By summing over k=l to m, we get the total number
of identity words of length m. Unfortunately, for k=3
there are approximately (m/2)*(m/2-l)/2 terms, making
the expressions too complex to deal with.

43

www.manaraa.com

Preliminaries

For early work on group languages, consult
Anisimov[1973]. More recent progress in the area is in
Muller and Schupp[1983].

44

www.manaraa.com

• Artinfs Algorithm

II.0 Artin's Algorithm

Artin [1925-1926] defined B(n+1) (the braid group
on n strands) and demonstrated that braids can be
characterized as automorphisms of the free group F(n).

Artin's algorithm takes a braid word W (expressed
in generators s(i) and s(i)1), converts each generator
into an action, applies those actions on the vector
<l,2,...rn>, and freely reduces that vector of words.
The actions that these generators create are:

s(i) : x(i) — > x(i+l)
x(i+l) — > x(i+l)' x(i) x(i+l)
x(k) — > x(k) for all k>i+l or k<i

s(i)1: x(i) — > x(ij x(i+l) x(i)*
x(i+l) — > x(i)
x(k) — > x(k) for all k>i+l or k<i

A simplified version of this algorithm would be:

www.manaraa.com

Artin's Algorithm

Step 1 READ BRAID WORD W ?
Step 2 INITIALIZE TUPLE = <1,2,...,N> 7
Step 3 LOOP UNTIL (W IS EMPTY) ;
Step 4 G = FIRST_GENERATOR(W) 7
Step 5 W = W BUT WITH FIRST GENERATOR DELETED
Step 6 /* APPLY G AS AN ACTION ON TUPLE */

IF (G is a positive generator) THEN
TUPLE(G) =TUPLE(G+l);
TUPLE(G+l)=TUPLE(G+l)' TUPLE(G) TUPLE(G+l)?

ELSE
TUPLE(G) =TUPLE(G) TUPLE(G+l) TUPLE(G)' ;
TUPLE(G+l) =TUPLE(G) ;

ENDIF;
Step 7 : /* FREELY REDUCE TUPLE */

CANCEL ALL OCCURRENCES OF a'a AND
aa' in TUPLE for all generators a ;

Step 8 : END LOOP ;
Step 9 : IF (TUPLE=<1,2 , . . , n>) THEN PRINT('IDENTITY') ;

ELSE PRINT('NOT IDENTITY') ?
Step 10: HALT ;

46

www.manaraa.com

Artin's Algorithm

The above algorithm would appear to run in
exponential time on the average because the tuple's
words appear to grow exponentially. This, however, is
no guarantee; in general, L-systems appear to have an
exponential growth behavior and yet many cases exist
which grow linearly. Likewise here, the
free-reductions will demonstrate some clearly
non-exponential cases.

For example, taking braid word
s(2)s(l)'s(2)s(l)s(2), the algorithm would compute as
follows;

Initial Tuple ; < 1 , 2 , 3 , 4 >
Apply s (2) ;

< 1 3 3 1 23 4 >
Apply s (1)';

< 131' 1 3 '23 4 >
Apply s (2)

< 131' 3 ' 23 , (3'2'3)1(3'23) ,4>
Apply s (1) ;

< 3 ' 23 , (3'2'3)131'(3*23) , (3'2'313'23) ,4>
Apply s (2) :

47

www.manaraa.com

Artin*s Algorithm

<3'23 ,(3'2'313'23) ,(3'2'31'3'23)(
3 '2 '3131'3'23) (3 *2 '313 *23),4>

Free reduction gives:
< 3 123 , (3 ' 2 ' 3 1 3 ' 2 3) , (3'2'3)(23)/ 4 >

An even better algorithm would not do a complete
free reduction over the TUPLE words but only
cancellations on the boundaries of the words being
concatenated at each step. This version of the
algorithm was implemented on the VAX 11/780 in PL\I.
This version of the algorithm will be used in all
further analysis. No further improvements are evident;
"folding” the words down their "midpoint" generators
would only cut space use in half.

II.A Exponential Worst Case for Artin's Algorithm

An analysis of growth rates of the freely-reduced
words formed by applying generator pairs will
constitute the core of the following proof:

48

www.manaraa.com

• Artin's Algorithm

Theorem 1: Artin*s algorithm has an exponential
time and space worst case.

Proof 1: First, we will need some lemmas,
definitions, and cases.

Partition the set of all braid words of length two
into seven sets:
Set A = { s(i)s(i)' or s(i)'s(i) }

Set B = { s(i)s(i) or s(i)'s(i)' }

Set C = { g(i)g(k) where
g(m) = s(m) or s(m)1 and |i-k|>l}

Set D = { s(i)'s(i-l)1 or s(i)s(i+l) }

Set E = { s(i)'s(i-l) or s(i)s(i+l)' }

Set F = { s(i)s(i-l)' or s(i)'s(i+l) }

Set G = { s(i)*s(i+l)1 or s(i)s(i-l) }

Def: A power-word of a set S = { a, b, ...}is a
word of the form a**n.

49

www.manaraa.com

• Artin's Algorithm

Lemma A: Artin's algorithm runs in constant space
and linear time for power-words of set A.

Proof A: Every time relator s(i) is applied
(giving a TUPLE word of length 3 (like 3'23)), the
relator s(i)' cancels the effect to give the initial
TUPLE. At most one word will have length of at most
three.

End of Proof A

Lemma B: Artin's algorithm runs in linear space
and quadratic time for power-words of set B.

Proof B; We need to prove this for only s(i)s(i);
the inverse case will hold by symmetry. With no loss
of generality, we can assume i=l, (all other cases will
be isomorphic except for position.) For (s(i))**n where
n<4, TUPLE words grow in the following manner:

1 , 2 , 3 , 4 >

, 2'12 , 3 , 4 >

, (2 ' 12) ' (2) (2 ' 12) , 3 , 4 >
50

Initial Tuple : <
Apply s (1) :

< 2
Apply s(l) :

< 2 '12

www.manaraa.com

• Artin*s Algorithm

which reduces to:
< 2'12 , 2*1'212 ; 3 , 4 >

Apply s(l) :
<2'1 * 212, (2*1*212) 1(2*12) (2*1*212) , 3, 4>

This looks exponential but note the reduction:
< 2'1 * 212 , (2'1'2'12) (12) , 3 , 4 >

From this point, an induction proof can start:

Sublemma Bl: For n>2, TUPLE words are of the
form:
<((2'1')**k)2((12)**k) , ((2*1*)**k) (2*12) ((12)**k) ,3,4>

for k odd, where n=2k+l
and

<((2'l')**k)(2*12)((12)**k) ,
((2*1*)** (k+1)) 2 (,(12) ** (k+1)) , 3 , 4>

for k even, where n=2k+2.

Proof of Bl:
Assume TUPLE words:
<((2'l')**k)2((12)**k),

((2'1')**k) (2*12)((12)**k),3,4> for k odd,
(the odd step of the induction, n=2k+l > 2)

(i.e. TUPLE for s(i)**n.)

51

www.manaraa.com

Artin * s Algorithm

Then, for s(i)**(n+l), we have by applying s(i):

<((2'11)**k)(2' 12)((12)**k) ,
((2'l')**k) (2'12) ((12)**k) ' ((2'l')**k)2((12)**k) ((

2•1 *)**k) (2112) ((12)**k) , 3 , 4 >

The second TUPLE reduces to :

((211 1)**k) (2 ' 1'2) ((12)**k) ((211 1)**k)2) ((
2'12)((12)**k)))

which further reduces to:

((2'l')**k)(2'1«212)((12)**k))

which factors to:

((211')**(k+1))(2)((12)**(k+1))) , which is the
even case.

So the even condition of the induction arises and is
proven from the odd case, whose proof is completed
below:

For s(i)**(n+2), we have by applying s(i) on the above
case's first TUPLE word: ((2'1')**(k+1))2((12)**(k+1)).

52

www.manaraa.com

Artin's Algorithm

For the second TUPLE word:

((2 11 1) **(k+1))2((12)**(k+1))'((2'1')**k)(
2'12)((12)**k))((2'1')**(k+1))2((12)**(k+l))

which reduces to:

((2'1')**(k+1))2'((12)**(k+1))((2'l')**k)2')(
2(12)**(k+1))

reducing further to:

((2•1•)**(k+1))(2'12))((12)**(k+1)).

This completes the odd n case induction and so the even
case will also
hold.
End of Proof Bl.

In the above proof, TUPLE grows by 4
generator-terms at each step, so s(i)**n will cause
space requirement 0(4n).

53

www.manaraa.com

• Artin*s Algorithm

Before each reduction is completed, at most twice
the space is needed, so it requirement is 0(8n). In
either case, the function is linear space. Since at
each step we have linearly many reductions and linearly
many steps, the time required is quadratic.

End of Proof B.

Lemma C: Artin's algorithm runs in linear space
and quadratic time for power-words of set C.

Proof C; In this case, braid words (g(i)g(k))**n
are considered where g(m) = s(m) or s(m)1

and | i - k | >1.

g(i) has a growth effect on TUPLE positions i and i+l.
g(k) has a growth effect on TUPLE positions k and k+1.

Since | i - k | >1, g(i) and g(k) operate independently
and produce independent complexity contributions. So,
Space-Complexity((g(i)g(k))**n)

= Space-Complexity(g(i)**n)+ Space-Complexity(g(k)**n)

= 2(0(8(n/2))), according to lemma B.
So we have linear space.

5.4

www.manaraa.com

■ Artin*s Algorithm

Similarly, the time requirement is quadratic.

End of Proof C.

Lemma D; Artin's algorithm' runs in linear space
and quadratic time for power-words of set D.

Proof D; We need to prove this for only
s(i)s(i+l); the other case (ie. s(i)•s(i-1)1) will
hold by braid-symmetry (ref. Garside [1965], the
mirror-images of braids.) With no loss of generality
and to save notational space, we can assume i=l, (all
other cases will be isomorphic except for position.)
For (s(l)s(2))**m, TUPLE words grow in the following
manner:

Initial Tuple : < 1 , 2 , 3 , 4 >
Apply s(l) :

< 2 , 2 ' 1 2 , 3 , 4 >
Apply s (2) :

< 2 , 3 , 3 12 ' 123 , 4 >
Apply s(l) :

< 3 , 3*23 , 3'2'123 , 4 >
Apply s (2) :

55

www.manaraa.com

• Artin's Algorithm

< 3 , 312 1123 , (3'2'123) • (3'23) (3'2'123) , 4>
which reduces to:

< 3, 3'2'123 , 3 12 ' 1'2123, 4 >
Apply s(l) :

< 3'21123 , 3'2'1'232‘123 , 3'2'1'2123# 4 >
Apply s(2) :

< 312 1123 , 3 12 11 12123 ,
(31211'2123) ' (3'2'1'232'123) (3'2*1'2123) ,4>

which reduces to:
< 3'2'123, (3'2'11)2(123), (3'2•11)3(123), 4 >

Apply s (1) :
<(3'2'1')2(123), (3'2'1,)2,12(123) , (3•2'1')3(123), 4>

We needed all the above to reach the first step of the
induction. From this late point, our induction starts:

Assume the following TUPLE:

< ((3 12 111) **k)(w)(123)**k, ((312'1')**k)(x)(123)**k,
((3'2'1')**k)(y)(123)**k, 4 >

Applying s (2) produces:

< ((3'2'1')**k)(w)(123)**k ; ((3'2'1')**k)(y)(123)**k ,
(((3'2'11)**k)(y)(123)**k)'((3'2'l')**k)(

x)(123)**k((3'2'l')**k)(y)(123)**k , 4 >
56

www.manaraa.com

Artin's Algorithm

which reduces to:

< ((3'2'l')**k)(w)(123)**k , ((3 ' 2' 1') **k)(y)(123)**k ,
((3'2'l')**k)(y'xy)(l23)**k , 4 >

Applying s(l) produces:

< ((3'2'l')**k)(y)(123)**k ,
(((3 12 11 1)**k)(y)(123)**k)'((3'211')**k) (

w) (123)**k((312'1')**k)(y) (123)**k ' f
((3•211 1)**k)(y'xy)(I23)**k , 4 >

which reduces to:

<((3*2'1*)**k)(y)(123)**k/ ((3'2'l')**k)(y'wy)(123)**k,
((3'2'1')**k)(y'xy)(123)**k , 4 >

So applying s(2)s(l) preserves the (3'2'l')**k left
boundary and (123)**k right boundary. The growth of
TUPLE depends on the "central" words (in w, x, y) and
so we focus on them in the following table (starting
where we left off in our initial step
(ie. ((s(l)s(2))**3s(l)):

57

www.manaraa.com

Artin*s Algorithm

w=2 x=2112 y=3
Apply s (2)

2 3 3 12'123
Apply s(l)

3 3 1 23 3'2'123
Apply s (2)

3 3'21123 (3'2*123) ' (3'23) (3'2'123)
which reduces to

3 3'21123 3 12 11 12123
Apply s(l)

3'2'123 (312 1123) 13 (3'21123) 3'2'1'2123
which reduces to

3 12'123 (3'2,1 ,)232'(123) 3'2'1'2123
Apply S (2)

3 '2'123 (3 '2 11 1)2 (123) (3 '2 '1 '2123) ' (3'2 '1 1) (
232')(123)(3'211'2123)

which reduces to
3'21123 (3'2'11)2(123) (3'2'1•2'123) (3'2'1'23) (123)

which further reduces to
3'21123 (3'2'1■)2 (123) (3'211')3(123)

Apply s(l)
and reduce to

58

www.manaraa.com

■ Artin*s Algorithm

(312 * 1')2(123) (3'2'1')(2'12)(123) (3'2'1')3(123)

At this point, we note the "loop structure" and so the
induction step-size would be (s(2)s (1))**3 (ie. six.)
So, we have:
For m > 1, the TUPLE structure will be:

< ((3 ' 2 11')**m)2(123)**m , ((3'2'1')**m)(2'12)(123)**ra ,
((3'2'l')**m)3(123)**m, 4 >

given braid word ((s(l)s(2))**(3m))s(l).

This implies 0(6(m/3)) growth, which means linear space
growth and quadratic time. End of Proof D.

Lemma E: Artin's algorithm runs in exponential
space and time for power-words of set E.

Proof E: We need to prove this for only
s(i)s(i+l)' ; the other case (ie. s(i)'s(i-l)) will
hold by braid-symmetry (ref. Garside [1965], the
mirror-images of braids.) With no loss of generality
and to save notational space, we can assume i=l, (all
other cases will be isomorphic except for position.)
For (s(1)s (2)')**m, TUPLE words grow in the following
manner:

59

www.manaraa.com

Artin's Algorithm

Initial Tuple : < wl , w2 , w3 , w4 >
Apply s(l) :

< w2 , w2' wlw2 , w3 , w4 >
Apply s (2)':

< w2, (w2'wlw2)w3(w2'wl'w2), w2'wlw2, W4>
Apply s(l) :

< w2'Wlw2w3w21w l 1w2 ,
(w2'wlw2w3w2'W l 1W2)'(w2)(w21wlw2w3w21w l 'W2) ,

W2'WlW2 , W4>
Only w2 cancels in the middle of the second TUPLE word:

<w21wlw2w3w21wl 'w2 ,
(w2'Wlw2w3'w2'Wl'w2)(wlw2w3w2'Wl1w2) ,

w21Wlw2, w4>
Apply s (2)':

<w2'wlw2w3w2'wl1w2 ,

(w21wlw2w3'w21Wl1w2wlw2w3w21wl1W2) (w2'wlw2)(
W2'wlw2w3'W2'wl1w2wlw2w3w2'wl1w2)’ ,
W21Wlw2w31W2'Wl'w2wlw2w3w2'Wl'W2 >

Only w2'wlw2 cancels in the middle of the second
TUPLE word.

60

www.manaraa.com

• Artin1s Algorithm

The growth pattern of the second TUPLE word (ie.
the largest)

is doubling the previous one and deleting the one
from three

steps behind. So the recurrence relation for the
length of

the second TUPLE is:
a(n) = 2(a(n-l)) - a(n-3).

Since wl, w2, w3 are words, this argument is an
induction because the final tuple words above can be
resubstituted as initial words and the process
repeated. As for the initial part of the induction, we
need only delete the fw's from the above expressions
(of case E); the proof is there.

All that remains is the complexity issue.
a(n)=2(a(n-l))-a(n-3) is a homogenous linear difference
equation. Using classical math.,

a(n) - 2(a(n-l)) + a(n-3) = 0
We have characteristic equation: b**3 - 2b**2 + 1 = 0 .
This gives eigenvalues:

www.manaraa.com

• Artin1s Algorithm

b=l , b=(1+(5)**(.5))/2 , b=(l-(5)**(.5))/2

In fact, the last two roots correspond to the Fibonnaci
series roots. The general solution is:

a(n) = A1 + A2((l+(5)**(.5))/2)**n
+ A3((l-(5)**(.5))/2)**n

Using boundary conditions:
a (0) = 1 , a(l) = 3 , a(2) = 7,

We have to solve:
1 = A1 +A2 + A3
3 = A1 +A2((1+(5)**(•5))/2) + A3((l-(5)**(.5))/2)
7 = A1 +A2((l+(5)**(.5))/2)**2 +A3((1-(5)**(.5))/2)**2

The solutions are:
A1 = -3
A2 = 2 + ((4/5)*(5)** (0.5))
A3 = 2 - ((4/5)*(5)**(0.5))

Then, we need only plug back into our general solution
above.
So,

a (n) = -3 +

62

www.manaraa.com

Artin's Algorithm

(2 + ((4/5)*(5)**(0.5)))*((1+(5)**(.5))/2)**n +
(2 - ((4/5)*(5)**(0.5)))*((l-(5)**(.5))/2)**n

is the exact growth rate. This would be the end of
this lemma's proof but we are also concerned with what
this exact answer means in a more clear (or real-world)
manner.
Approximately,

a(n) *= -3 + (3.788)*(1.618)**n + (.21114) *(-0.618) **n .

The first and last terms drop out as
insignificant.

We can adopt and alternate approach for
understanding the growth rate relative to others (as
follows.) Note that the solution will be bigger than
the Fibonnaci series (ie. a(n)=a(n-l)+a(n-2)) but
smaller than 2**n (ie. a(n)=2(a(n-l)), a very close
approximation.) However this is only the second (and
largest word.) The word on one side has length a(n-l)
and the other has a(n-2). So we have a total TUPLE
length of

a(n) + a(n-l) + a(n-2) < 2(a(n)).

63

www.manaraa.com

Artin’s Algorithm

So 2Fibonnaci(n) < Length(TUPLE) < 2**(n+l).
So case E requires exponential space and exponential
time; really, at each step, (3a(n-l)+a(n-2)) copies
and a(n-3) reductions are executed. The growth rate
remains the same.
End of Proof E.

Lemma F: Artin's algorithm runs in exponential
space and time for power-words of set F.

Proof F: We need to prove this for only
s(i)s(i-l)' ; the other case (ie. s(i)'s(i+1)) will
hold by braid-symmetry (ref. Garside [1965], the
mirror-images of braids.) With no loss of generality
and to save notational space, we can assume i=2, (all
other cases will be isomorphic except for position.)
For (s(2)s (1)1)**m, the following table exemplifies the
growth of TUPLE words:

Initial Tuple : < wl , w2 , w3 , w4 >
Apply s (2) :

< Wl , W3 , W3'w2w3 , w4 >
Apply s (1)':

< wlw3wl1 , wl , w31W2w3 , w4 >

64

www.manaraa.com

Artin's Algorithm

Apply s (2) :
< wlw3wl' , W31W2W3 , (w3'w2w3)'wl(w3'w2w3) , w4 >

Note: No cancellation will occur because s(2)
will cause concatenation to occur between words with
boundary wl and w3 (likewise for s(l)1.) Again, string
induction causes a property (such as boundary words) to
hold. Since wl and w3 are initially 1 and 3, no
cancellation can occur. As noted above, the boundary
words repeat after each (s(2)s(l)') (ie. (two wl
boundary and one w3 boundary) followed by (one wl
boundary and two w3 boundary.)
The growth pattern is:

Applying s(2) implies increase total TUPLE space
used by twice the third word.

Applying s(l)' implies increase total TUPLE space
used by twice the first word.

The exact difference equations are:

a(n+l) = a(n) for n even

65

www.manaraa.com

Artin's Algorithm

b(n+l) = c(n) for n even

c(n+l) = 2*c(n) + b(n) for n even

a(n+2) = 2*a(n+l) + b(n+l) for n odd

b(n+2) = a(n+l) for n odd

c(n+2) = c(n+l) for n odd

To resolve the problem with the two sets of
equations (even and odd), we concentrate on the
growth aspect and use the "telescoped" (or
composite equations:

a(n+2) = 2*a(n) + c(n)

b(n+2) = a(n)

c(n+2) = 2*c(n) + b(n)

Now we rewrite as homogenous equations:

66

www.manaraa.com

Artin's Algorithm

a(n+2) - 2*a(n) - c(n) = 0

b(n+2) - a(n) = 0

c(n+2) - 2*c(n) - b(n) = 0

From this point, we will treat the two steps (in n+2)
as one. We now apply the shifting operator used
in the calculus of finite differences.

(E-2)a(n) - c(n) = 0

(E)b(n) - a(n) = 0

(E-2)c(n) - b(n) = 0

'Substituting (E)b(n) = a(n), we get:

(E-2)(E)b(n) - c(n) = 0

www.manaraa.com

• Artin's Algorithm

(E-2)c(n) - b(n) = 0

Substituting b(n) = (E-2)c(n) will give:

(E-2)(E)(E-2)c(n) - c(n) = 0.

Reduction results in:

(E**3-4E**2+4E-1)C(n) = 0.

This equation has solutions:

E=1 , E=(3-(5)**(0.5))/2 , E=(3+(5)**(0.5))/2

Now we recombine this with the fact that (n/2) is
the real power to use instead of n (due to the
two step approach) and we have:

c(n) = Cl + C2*((3-(5)**(0.5))/2)**(n/2)
+ C3*((3+(5)**(0.5))/2)**(n/2)

Note: if you feel uncomfortable with the intuitive
way of resolving the two step problem, the formal
way would be to use E**2 as the operator but this
would give you the same result.

Returning back to the central problem, since a(n)
68

www.manaraa.com

Artin's Algorithm

and b(n) are E-linearly related to c(n), they too
have the form:

b(n) = B1 + B2*((3-(5)**(0.5))/2)**(n/2)
+ B3*((3+(5)**(0.5))/2)**(n/2)

a(n) = A1 + A2*((3-(5)**(0.5))/2)**(n/2)
+ A3*((3+(5)**(0.5))/2)**(n/2)

In a big-0 analysis, these functions grow more
slowly than’ those in Case E. Note that this is
primarily true because of the (n/2) exponents.

End of Proof F.

Lemma G; Artin's algorithm runs in linear space
and quadratic time for power-words of set G.

Proof G: We need to prove this for only
s(i)s(i-l) ; the other case (ie. s(i)'s(i+l)') will
hold by braid-symmetry (ref. Garside [1965], the
mirror-images of braids.) With no loss of generality
and to save notational space, we can assume i=2, (all
other cases will be isomorphic except for position);
therefore, we concentrate on (s(2)s (1))**m. The proof

69

www.manaraa.com

Artin's Algorithm

is similar to that of lemma D. The following table
exemplifies the initial growth:
Initial Tuple : < 1 , 2 , 3 , 4 >
Apply s (2) :

< 1 , 3 , 3*23 , 4 >
Apply s(l)

Apply s (.2)

Apply s(l)

Apply s (2)

< 3 , 3'13 , 3 '23 , 4 >

< 3 , 3'23 , 3'2'123, 4 >

< 3*23 , 3 12'323 , 3'2'123 , 4 >

< 3'23 , 3'2'123 , 3'2'1'(3)123, 4>
Apply S (1) :

< 3'2'123, (3'2'1')2(123), (3'2111)3(123), 4 >
Apply s (2) :

< 3*2'123, (3'2'1')3(123) , (3'2'1')3'23(123), 4 >
Apply s(l) :
<(3'2'1)3(123)/ (3'2'1')3'13(123), (3 ' 2'1')3'23 (123),4>

70

www.manaraa.com

Artin's Algorithm

From s(2)s(l) on, the loop structure becomes
apparent: every (s(2)s (1))**3 will produce another
(3'2'1') on the left of every TUPLE word (below 4) and
(123) on the right. To prove this, first we show that
previous (3'2'1') and (123)'s don't affect the
situation,
spl
Assume <(3'2'1')W(123),(3'2'1')x(123), (3'2•1')y (123)>.

By applying s(2), we have:

<(3'2'1')w(123) , (3'2'1')y (123) , (3'2'1')y 'xy(123)>.

By applying s(l), we have:

<(3•2'1')y(123),(3'2'l')y'wy(123), (3'2'1')y'xy(123)>.

So by induction here, (s(2)s (1))**n has no growth from
(3'2'1') or (123).

So the growth pattern is due to the central words
w, x, y. However, the example above demonstrates that
w=3 , x=3'13, and y=3'23 will recur after (s(2)s (1))**3
and, in doing so, will generate (3'2'1') and (123) on
the left and right (respectively) of three TUPLE words.
So the growth rate is (0(9(n/6)) for space and

71

www.manaraa.com

Artin's Algorithm

quadratic time due to the linear number of
cancellations in each step.
End of Proof G.

»

The Remainder of the Theorem1s Proof ,

Sledge-Hammer Argument: To prove that
exponential-time and space are the worst possible, note
that the transformation resulting in growth is x(i) — >
x(i+l)'x(i)x(i+l). Assuming the worst (really
impossibly bad) case that the iterations were applied
to the same string each time and further assume that no
cancellation occurs (even worse impossibility), then
the largest words would be of length 3**n, which is
exponential and not too far from case E. Now that we
have shown 3**n is the absolute worst, cases E and F
are actual cases that exponential one do exist.

Below is a proof that case E is the absolute
worst, not 3**n.

Now to close the proof, we apply a "greedy"
argument: Since type E patterns produce the worst
exponential growth, we need only apply them to produce
the maximal growth pattern. So words such as

72

www.manaraa.com

• Artin's Algorithm

(s(1)s (2) ') **n are the worst braid words.

Note: one may argue that a combination of types
will possibly produce a worse case but this is false
because take any word of length n. By using other than
the exponential type patterns, growth is linear. If
exponential types are used, we note: the proofs above
assume initial words don't cancel; however, by
combining types this can't be guaranteed and so
cancellations could occur (making the growth very
small.) If no cancellation occurs, even then the
intermediate words will be smaller than in the
exponential case and so the growth will never catch up
with the all exponential case. The greedy argument
before this note holds, but I hope this note removes
any doubts.

Note: the above paragraph seems too sketchy, here
is one of four equivalent cases that remain to be
proven (brevity and redundance prevent me from further
exposition.)

73

www.manaraa.com

Artin's Algorithm

Start with <wl , w2 , w3 , w4 , w5 , >.

Applying 1 will give:

<w2 , W2'wlw2 , W3 , W4 , W5 , >.

Assume that the next generator g is nonadjacent
(ie. |g—1 | >1.) In that case, only strings to the left
of position w2 would be affected, resulting in very
little growth. If we jumped like this, in the long
run, it would decrease the exponent of our grow
expressions (cutting it in half.) Since 3**n would be
the absolute impossible worst case, 3**(n/2) would be
the result of this, which is a function less than that
of lemma E. Since the absolute impossible worst is
"ruined” by this policy (picking |g—1 |>1), then the
real strings would also be smaller than those of lemma
E.

Instead let us assume the policy is not true. If
1g—1 |=0, then we get linear growth (according to the
lemmas.) If |g-l|=l, then we either get our previous
policies (in .the lemmas, and hence covered) or we get
rightward motions, 12'3 or 12'3'. However, these
produce less of a growth because the larger expressions

74

www.manaraa.com

Artin's Algorithm

remain on the left as we pick generators further right.
So non-pairwise generator selection will result in
short strings (ie. we produce a trail of partial
growths as we move.) Since this principle holds whether
we select generators moving right or left, the case is
proven.

End of Proof of Theorem 1.

Note: All the above lemmas were verified by
computer for braid words of length up to nine.

Note: The braid (s(l)s(2)')**n is interesting in
that no-unraveling can occur. In this sense, the TUPLE
words sizes represent a "good" measure of real
topological complexity. This opens up a totally new
area of inquiry. Topological complexity of knots could
be an interesting second step.

II.B Experiments in the Average Case
for Artin's Algorithm

Before proceeding further with a formal analysis
of Artin's algorithm, experiments demonstrated it's
average behavior. By attaching a

75

www.manaraa.com

Artin's Algorithm

braid-word-enumerating subroutine, Artin's algorithm
was run over all braid words upto a certain length. A
statistical subroutine collected the results. In the
resulting tables,
let: n = number of strands to the braids

m = length of braid-word
f(m,n) = average length of free-relator

(ie. TUPLE word) (given m and

n=2 n=3

m= 1 : 2.0000000000 1.6666666667
2 : 2.2500000000 2.0000000000
3 : 2.5000000000 2.3680555556
4 : 2.7187500000 2.7617187500
5 : 2.9250000000 3.1893229167

. 6 : 3.1145833000 3.6532118056
7 : 3.2946428570 4.1601097470
8 : 3.4638671875 4.7151311239
9 :

•

3.6258680556 5.3256615533
10 : 3.7800781250 5.9989243825
11 : 3.9286221591 6.7438931032

76

www.manaraa.com

Artin's Algorithm

n=4 n=5

1 : 1.5000000000 1.4000000000
2 : 1.7638888889 1.6125000000
3 : 2.0555555556 1.8432291667
4 : 2.3771219136 2.0953613281
5 : 2.7335390947 2.3723095703
6 : 3.1292509717 2.6775390625
7 : 3.5696034094
8 : 4.0604543687

n=6 n=7

m= 1 : 1.3333333333
2 : 1.5100000000
3 : 1.6991111111
4 : 1.9031166666
5 : 2.1243333333

1.2857142857
1.4365079365
1.5962301587
1.7666515101

77

www.manaraa.com

Artin’s Algorithm

n=8 n=9

m= l 1.2500000000 1.2222222222
2 1.3813775510 1.3385416667
3 1.5194363460 1.4600332755
4 1.6654616566 1.5876481798

Note: these results were computed using a braid
enumeration routine coupled with Artin's algorithm.

Clearly, the function f(m,n) is not linear in m
(use any difference method.) By differences, it also
does not appear to be quadratic. The growth rate
appears to be less than quadratic and greater than
linear. If it is a complicated expression with
exponential terms, then it is starting extremely slowly
as such. Warning: the n=2 case is totally deceptive
because there- is only one transformation and it's
inverse (which would produce a linear to sublinear
growth.) Use the tables for n>2.

78

www.manaraa.com

Artin1s Algorithm

Interpreting f(m,n)'s growth with respect to n,
(for small m) as n increases, with more TUPLE
positions, the growth effect of allowing one more braid
generator to be used in constructing braid words will
result in smaller TUPLE words because the larger TUPLE
words could have moved to a larger set of alternate
positions. In other words, the effect of the braid
transformations is distributed among more positions.
The exponential growth pairs would have a higher
probability of being applied on short TUPLE words,
showing insignificant growth (for small m.) ‘ For
example, braid words in B(4) of length three will have
smaller TUPLE words than braid words of B(3) of length
three.

Unfortunately, for larger m, the growth behavior
of relative to n becomes more complex. At m=5, the cut
of curve f(m,n) (as n varies) has a peak at n=3 because
n=3. has the capacity for exponential transformations
(and since n=3 will receive the most concentrated
effect from them, f(m,3) will grow faster than the
tables with larger n.) These trends might not hold for
m larger than these tables represent because the second
differences for n=4 are larger than n=3. Extrapolating

79

www.manaraa.com

Artin's Algorithm

this, f(m,4) will eventually out grow f(m,3). This may
occur because f(m,4) will have more exponential cases
than f(m,3) even though they may be more concentrated
with .f (m,3) .

One may argue that program ARTESIAN (in the
appendix) should be run longer to produce larger f(m,n)
tables; however, all the above tables required a
continuous week of run time on a VAX-11/780. So over a
few billion braids were tested in these runs. Further
experimentation would require the next generation of
computers.

II.C Analytical Results of Artin's Algorithm's:
Average Case

At first, a Markov matrix approach would seem
appropriate for this problem. Let each row represent a
generator and each column a corresponding generator.
Start with an initial TUPLE vector and repeatedly take
matrix products. Assume stationary conditions (in a
constant stat.e or steady growth) and solve for them.
All this works fine for studying L-systems and
stochastic processes but with this system such a

80

www.manaraa.com

Artin's Algorithm

stationary state does not exist. As m grows, the
cancellations produce drastic contractions and the
exponentiations produce larger explosions. In a sense,
the ahistorical aspect will neglect the long chains of
cancellations and exponentiations (unless the rows and
columns represent products of generators but then our
matrix increases in size exponentially while it's
expressive capacity for the chain-effects (ie.
historical effects) grows linearly, making this
modification unfeasible.) The median cases may be well
represented but the total distribution would' be
ignored; therefore, this approximation will get worse
as m increases beyond 2. So L-system methods are
useless here.

Next, by computing the contribution of the
exponential cases to the general case, an answer may
emerge. A combinatorial view would give:

4(n-l) = number of exponential generator-pairs

There are approximately 0(4(n-l)) words of length
m with k=m/2 exponential pairs of one kind. They
contribute 0(4(n-1)2**(m/2)) at most according to lemma
E. Dividing by the total number of words (2n)**m, we

81

www.manaraa.com

Artin’s Algorithm

have a contribution of: 0(4(n-1)(2**(m/2))/((2n)**m))
which reduces to:

4 (n-1)
(2**(m/2))(n**m)

As m grows,, this contribution is less than one.
Now we look at words with k occurrences of an
exponential pair (where k<m/2) . There are at most
C(m,k) ways to choose where to place the k pairs (in
fact, this is a rough upper bound.) Assuming no
cancellation in these cases (to simplify the terms),
those k pairs will cause at most 2**k growth (by lemma
E.) Since there are m-2k generators remaining to fill
in the braid word, we multiply by (2n)**(m-2k) to give
all the cases. This also is a rough upper bound
because we should disregard the exponential pair
mentioned above but that would give ((2n)**2
1)**((m-2k)/2) which asymptotically is the same. So we
have the following contribution to the general case due
to the exponent pair occurring k times cases (assuming
all other actipn is linear):

82

www.manaraa.com

Artir^s Algorithm

4 (n-1)C(m,k) 2**k((2n) **(m-k))0()
(2n)**m

which reduces to:

4C(m,k)
0()

(n**(k-1))

This approximation does express the growth pattern
for very small m (such as how f becomes smaller as n
\grows while m remains fixed.) For larger m (such as
m>10), this approximation is totally absurd because we
left out the partial-commutativity effect, the effects
of cancellation (anti-exponential on exponentially
large strings), and finally that even if the
exponential-pairs exist, if they cause growth in one
string, then the next braid transformation might (very
probably) switch that string out of the TUPLE slots
which will be the range of the next exponential pair,
thus the 2**k is a tremendous over-estimation. These
three factors (ie. partial-commutativity,
cancellation, and slot-switching) would probably give
the sub-quadratic growth behavior. Apparently, no
analytic mathematical model lends itself adequately to
expressing all these three properties simultaneously.

83

www.manaraa.com

Artin's Algorithm

The combinatorial approach used above could be refined
to approximate the slot-switching but the other two
properties are much harder.

Warning: at first, recurrence relations could be
written which match the pattern of the relators. After
characterizing all of them, the problem unfolds: any
recurrence system assumes a unique path (or at least
equally valued paths) to an initial value.
Unfortunately, cancellation (primarily, it's
non-monotonic effect) almost always negates this path
criterion. Hence, this ostensibly general method of
combinatorially dealing with presentations fails. Even
if this was not the case, the recurrence relations
would almost always be too complex to prove useful.
The same holds true for a conditional probabilistic
version of the above (unless very rough approximations
are. taken which, in turn, would become worthless
estimates.) Computations were carried out along these
lines with no success.

84

www.manaraa.com

■ Artin's Algorithm

II.D An Interesting Note

Garside's algorithm's behavior is strongly
dependent upon the number of strands n (or generators.)
It blows up very quickly because of it.

Artin's algorithm has the same worst case for all
n>2. Not only does n not affect it's worst case but
Artin's average case behavior requires less storage as
n increases (due to the spreading of the growth
effect.)

85

www.manaraa.com

Garside's Word Problem Algorithm

III.O Garside^ Word Problem Algorithm

Garside's algorithm for the word problem for braid
groups was first presented in Garside[1965] and later
published in Garside[1969].

III.A Definitions for the Garside Algorithm

Def: The product of successive generators is
denoted as pi(m) = al*a2*...am.

Def: The fundamental word of braid group B(n+1)
is the word FW=pi(n)*pi(n-l)*...*pi(l).

Example: FW for B(4) is 123121.

Def: The reflection of a generator g(k) is a
generator Ref(g(k)) = g(n+l-k).

Def: Two positive braid words (wl and w2) are
positively equal iff wl can be transformed into w2 by
applying relations with only positive relations (ie.
relations of the form a(i)a(j)=a(j)a(i) and
a(i)a(i+l)a(i)=a(i+l)a(i)a(i+l).)

86

www.manaraa.com

Garside's Word Problem Algorithm

Def: A word-graph or word-diagram of a positive
braid word W is a subgraph of the Cayley graph which
characterizes all words positively equal to W. The
word graph has a source (or origin) and a sink. The
wordgraph is a directed acyclic graph. Its1 edges (or
links) are labelled with the positive generators of
B(n+1).

Example: The positive word 2123 has word-graph:
1

o---- o
2 / \ 2
/ \ 3o o— o
\ 1/ /1 \ / / Io---- o--------o

2 3

The three positively equal words are 2123, 1213,
1231. By convention, the source is the leftmost node
and the sink is the rightmost.

Def: The spine of a word diagram is the path from
source to sink labelled by the initial braid word.
Occasionally, according to the context, the term spine
will also be used in reference to any specific path
with the property being discussed at the time.

87

www.manaraa.com

Garside’s Word Problem Algorithm

III.B The Xi-Theorem for the Garside Algorithm

A part of the Garside algorithm is missing in all
previous descriptions of it. In the segment for
handling non-positive words, Garside states that for
any braid generator ai, there exists a positive word Xi
such that:

ai' = (Xi) * (FW') Garside proves such an Xi
exists but his proof is not constructive. Later papers
don't even make a suggestion as to what Xi is. The
following theorem should resolve this situation:

Thm: If ai is the ith braid generator, then
ai'=(Xi)*FW' has (as a uniform, positive word)
solution:
Xi = pi(n)*pi(n-l)*...*pi(n-i+2)*a2

a3...a(n-i+l)*p(n-i)*...*p(l).

Proof: Let Xi= ai'*FW.
By successive factoring, we get:

Xi= ai'*pi(n)*pi(n-1)*...*pi(n-i+2)*
al*a2*...*a(n-i+l)*...*p(l).

Xi= ai1*pi(n)*pi(n-1)*...*pi(n-i+3)*

88

www.manaraa.com

Garside’s Word Problem Algorithm

al*a2*a3*...*a(n-i+2)*al*a2*...*a(n-i+1)*...*p(1).

Now we let al commute over a3*...*a(n-i+2), giving:

Xi= ai'*pi(n)*pi(n-1)*...*pi(n-i+3)*
al*a2*al*a3*...*a(n-i+2)*a2*...*a(n-i+l)*..,*p(l).

But by the relator al'*a2'*al'*a2*al*a2, we have

Xi= ai'*pi(n)*pi(n-1)*...*pi(n-i+3)*
a2*al*a2*a3*...*a(n-i+2)*a2*...*a(n-i+l)*...*p(l).

which compacts to:

Xi= ai'*pi(n)*pi(n-1)*...*pi(n-i+3)*
a2*pi(n-i+2)*a2*...*a(n-i+1)*...*p(l).

This proves the initial step of .an induction proof
of the following lemma:

Lemma: pi(n-i+k+1)*ak = a(k+l)*pi(n-i+k+l). This
lemma is Lemma 6 on page 20 of Garside's thesis[1965].
The proof is similar to the one above. This process of
moving ak to the left and incrementing k by 1 finally
gives:

Xi= ai'*ai*pi(n)*pi(n-1)*...*pi(n-i+3)*

89

www.manaraa.com

Garside's Word Problem Algorithm

pi(n-i+2)*a2*...*a(n-i+1)*...*p(l).

Xi= pi(n)*pi(n-1)*...*pi(n-i+3)*
pi(n-i+2)*a2*...*a(n-i+l)*...*p(l).

which is the desired result.

End of Proof

Example: 2' = (1234)(23)(12)(1)

XII.C The Garside Algorithm

Step 1: Read Braid Word W = ala2...am
where each ai is a generator;

Step 2:
/★Loop to convert negative generators into */
/* positive words with negative */
/* fundamental words and shift fundamental */
/* words to the left (as a counter, count) */
/*Record number of negative generators in count */

COUNT = 0;
WORDPASS: DO I = LENGTH(BWORD) TO 1 BY -1?

90

www.manaraa.com

Garside's Word Problem Algorithm

IF THE GENERATOR I IN BWORD IS AN INVERSE GENERATOR,
THEN

INVCASE : DO?
IF (COUNT IS ODD)
THEN REPLACE GENERATOR I WITH POSITIVE WORD Xi;
ELSE

DO;
SET Xi = POSITIVE WORD CORRESPONDING

TO GENERATOR I ?
SET K = POSITION OF FIRST INVERSE GENERATOR

OCCURRING IN BWORD BEFORE I ;
SUBSTR(BWORD,K+l,I—K) = REFLECTION(

CONCATENATE(SUBSTR(BWORD,K+l,I-K-l), Xi));
END;

COUNT = COUNT - 1?
END INVCASE ?

ELSE IF (COUNT IS EVEN) THEN DELETE
SUBSTR(BWORD,1,1)J

/ * IN THE ABOVE, WE DO DELETIONS TO AVOID */
/* DUPLICATION OF GENERATORS MOVED IN THE */
/* REFLECTION STEP */

END WORDPASS;

91

www.manaraa.com

Garside's Word Problem Algorithm

Step 3j_ COMPUTE G = WORDDIAGRAM(BWORD);

Step 4;
/* SELECT A PATH WITH THE MAXIMAL NUMBER OF*/
/* FW'S, STARTING AT THE CONSECUTIVE */
/* ORIGIN OF WORDDIAGRAM OF BWORD */

SET POINTER PTR TO THE ORIGIN OF G.

LOOP
SCOUT = PTR ?/*SCOUT will scout ahead to see if a*/

/* whole FW starts at node PTR */
MATCH = TRUE;
DO I = 1 TO LENGTH(FW) WHILE (MATCH);

IF A LINK EXISTS WITH LABEL = GENERATOR I OF
FW

THEN SCOUT = LINK(SCOUT);
ELSE MATCH= FALSE;

END ;
IF (MATCH = TRUE) THEN

DO;
PTR = SCOUT;
COUNT = COUNT + 1 ;

END;

92

www.manaraa.com

Garside's Word Problem Algorithm

UNTIL (NOT(MATCH));

Step 5;
/* SELECT PATH STARTING AT PTR AND ENDING AT THE END */
/* WITH THE SMALLEST LABELS AT EACH STEP . */
/* THE LABELS OF THIS PATH CONSTITUTE THE BASE WORD */
/* OF THE REMAINDER */
MINPTR = PTR?
BASEWORD = " ?
DO WHILE (MINPTR NOT-EQUAL-TO 0) ?

SELECT LINK (STARTING AT PTR) WITH SMALLEST LABEL;
NAME THAT LINK MINLINK AND THAT LABEL MINLABEL;
MINPTR = MINLINK(MINPTR)?
BASEWORD = CONCATENATE(BASEWORD , MINLABEL)?

END?

Step 6: .
PRINT 'THE GARSIDE FORM OF WORD IS FW**',

. COUNT,BASEWORD;
IF (COUNT = 0 AND BASEWORD='')

THEN PRINT 'THE WORD IS THE IDENTITY.';
ELSE PRINT 'THE WORD IS NONTRIVIAL.'?

9.3

www.manaraa.com

Garside's Word Problem Algorithm

XII.D Turing Machine of Variant of Garside's Algorithm

A variant of Garside's algorithm can be
constructed which will be proven to operate in
non-deterministic linear time on a Turing Machine.
Instead of computing the whole word-diagram, start with
the initial word and by calling oracles, transform it
into a word with the maximal number of copies of the
fundamental word in front.

The Turing Machine is:

TURING_MACHINE: PROCEDURE;
Stepl:
Declarations: Tapes: Input , Output , Work , Work2

Oracle-Substitution (or OS) , FW
Counters: FWCOUNT , Oracle-Position (OP)

Comment: After each call to the Oracle, OP will have
the position of the desired substitution, while OS
will have the substitution string (such as 212.)

Comment: Input will have the format: X input-word Y.
Comment: Tape FW will have only a copy of the

fundamental word, enclosed in X and Y. X and Y are

94

www.manaraa.com

Garside's Word Problem Algorithm

end-markers.
Comment: Input-head will start at rightmost generator.

Step2:
/* Put positive version .of input word on Work tape.*/

DO UNTIL (Input-cell=X)
IF (Input-cell = negative-generator) THEN

/* Next step computes Xi-word. */
Copy fundamental word from FW to Work2
except for the Input'th occurrence of 1;

Move FW head left until X;
Copy Work2 word to

the left side of Work word;
IF (Counter is even) THEN

Move Input head left;
DO UNTIL (Input-cell =

negative generator or X);
Copy Reflection(Input

generator) to Work;
Move Work head left;
Move Input head left;

END DO;
IF (Input-cell = X) THEN;

95

www.manaraa.com

Garside1s Word Problem Algorithm

ELSE
Move Input head right.

END IF;
COUNTER = COUNTER - 1;

ELSE
Comment: positive generator case.
IF (Counter is odd) THEN

Copy Input-cell generator to Work;
Move Work head left;

END IF;
END IF;
Move Input head left;

END UNTIL;

Step3: /*Repeatedly call the oracle in main loop.*/
/*This will simulate the creation of */
/* a word diagram. */
Place X and Y markers to the

left and right of the Work tape word;
CALL ORACLE(OS,OP);
/* Oracle returns values on */
/* OP counter and OS tape.*/
DO UNTIL (OP = 0);

96

www.manaraa.com

Garside's Word Problem Algorithm

/*0P = 0 means no more substitutions needed.*/
Move Work head to position OP.
Copy OS word starting in

that position on Work tape;
/*The above statement will write over */
/* previous contents in those positions.*/
/*So, tape OS may have 212 to */
/* overwrite 121. */
CALL ORACLE(OS,OP);

END UNTIL;

Step4&5: Comment: Pattern Match with FW
Reset FW head to leftmost;
Reset Work head to leftmost;
DO UNTIL (OUTPUT-cell = F OR

WORK head points to Y) ;
DO UNTIL (FW-cell = Y OR OUTPUT-cell = F);

IF (FW-cell generator =
Work-cell generator)

THEN
Move FW head right;

ELSE
OUTPUT-cell = F;

97

www.manaraa.com

Garside's Word Problem Algorithm

END IF;
END UNTIL;
Reset FW head back to leftmost generator;

END UNTIL;

Step6; IF (OUTPUT-cell not = F) THEN OUTPUT-cell = T;
Comment: T means word is identity.
HALT.

END TURING-MACHINE;

III.E Analysis of the Garside Algorithm

We will analyze the Turing machine model (for
preciseness's sake.)

Step 1 is the initial input assumption.

Step 2 makes a pass over the input tape and
produces a positive word on the Work tape. In this
mapping, each positive generator in the input produces
one positive generator in the work tape. Each negative
generator will be replaced by a positive word of length
L = n(n+l)/2 - 1. Since n doesn't vary with length m

98

www.manaraa.com

Garside's Word Problem Algorithm

(of the input), L is constant relative to m. Hence,
the input generators produce a work tape word requiring
linear space. Note:, Counter counts the number of
negative generators, therefore only requiring log
space.

Step 3 depends on requires no extra space because
all substitutions are of the same length as what they
are substituting.

Note: The standard Garside algorithm differs with
the variant TM version only at this main point (with
respect to complexity.) The remainder of this chapter
is devoted to this point: How large can the word
diagrams grow!

Steps 4 and 5 are pattern matchs along the length
of the work tape. In the Turing version, one matching
process tests to see if the work tape is really just
multiple copies of the fundamental word. In the
standard version, Step 5 has an extra pattern match to
compute the minimal tail (or remainder) word; however,
this pattern match requires linear time and no extra
space.

99

www.manaraa.com

Garside's Word Problem Algorithm

Step 6 is the one character output.

Note: Except for Step 3, the whole algorithm (in
either version) would run in linear time.

we have just proven:

Theorem: A variant of the Garside algorithm (for
solving WP(B(n+l))) runs in non-deterministic linear
space on a Turing Machine.

Savitch proved for Turing Machines that
nondeterministic linear space problems can be solved in
deterministic quadratic space (ref. Harrison[1978],
page 286.) Hence, the following corollary:

Corollary: A variant of the Garside algorithm
(for solving WP(B(n+l))) runs ' in deterministic
quadratic space on a Turing Machine.

Note: this problem could still very likely take
exponential time because the decisions (that are made
via oracle) are complex ones, some substitutions
appearing to have no effect till many steps later.

1 00

www.manaraa.com

Garside's Word Problem Algorithm

XXI.F Analysis of Word-Diagram Growth

III.F.l Three Complexity Measures

Three measures are of . primary concern in
characterizing the complexity of a word-diagram:

1. number of nodes (of the graph), termed NUMNODE.
2. number of edges, termed NUMEDGE.
3. number of paths from the initial node to

the final node, termed NUMEQ. Equivalently,
NUMEQ is the number of positively equal words.

III.F.2 Relationships between NUMEQ and the other two

Theorem: There exists a sequence of words (in
B(n+1), for n>3) which have exponentially growing NUMEQ
and.yet their word-diagrams have NUMNODE values only
growing linearly (in the length of the word.)

Proof: Take braid words of the form
w(k)=(1322)**k. Note that 13 has an equivalent in 31
but neither commutes over 2. Since two 2'a occur
together, no production like 323=232 or 121=212 can be
applied. Hence, the word-diagram (resembling an open

1 0 1

www.manaraa.com

Garside's Word Problem Algorithm

necklace) has a linear NUMNODE growth rate but
NUMEQ=2**k. (QED)

Theorem: There exists a sequence of words (in
B(n+1), for n>3) which have exponentially growing NUMEQ
and yet their word-diagrams have NUMNODE values only
growing quadratically (in the length of the word.)

Proof: Take.braid words of the form w(k)=(13)**k.
The length of w(k) grows linearly in k.

NUMEQ(w(k+l)) = NUMEQ(w(k)13) > (2)*NUMEQ(w(k))
because, at the least, by partial commutativity, 13 can
have the form 13 and 31. Note that this assumes
independence of 13-pairs, which weakens the bound; the
exact value of NUMEQ(w(k)) is C(2k,k).

Now for NUMNODE, we can draw the word-diagram:

102

www.manaraa.com

Garside’s Word Problem Algorithm

Word Diagram for w(k)
3 3 3 3

o >o >o > .. . o >o
• • • • •

/ / / ' ... / /
1 / / / ... / / I
/ / / ... / / o-->o--->o---> .. . o--->o/ / / ... / /

1 / / / ... / / I
/ / / ... / / o-- >o--->o--- > .. . o-- >o/ / / ... / /

1 / / / . . . / / I
/ / / ... / / o >o >o > ... o— ->o/ / / ... / /

1 / / / ... / / 1/ / / ... / /o >o >o > ... o >o
3 3 3 3

Every extra 13 in w(k) will add a new row and
column, giving NUMNODE(w(k))=(k+l)**2 and
NUMEDGE=2k(k+l).

QED

So far, we have only shown a linear and quadratic
NUMNODE with exponential NUMEQ (using commutativity.)
Now let's exhaust the power of commutativity and see
how large NUEQ can become by it. Note: First we will

103

www.manaraa.com

Garside's Word Problem Algorithm

remove a restriction by allowing n to also vary as
well, giving the full result.

Theorem: Let

V = l**(m/j)*3**(m/j)*...*(2j-l)**(m/j). We then
get NUMEQ(V) > (j!)**(m/j) where 2j-l < n+1.

Proof: There are j! ways of permuting
(1,3,...,2j-l). If we treat V as (m/j) independent
copies of (1,3>...,2 j-1), the results follow
immediately. (QED)

So NUMEQ(V) can produce larger exponential
functions provided n can increase.

If we remove the independence constraint, we have
the exact value:

Theorem: NUMEQ(V) = (m!)/ (((m/j)!)**j).

Proof: Refer to page 12 of [Liu, C.L.] (ie. j
categories of objects, (m/j) of each category,
distributed into n distinct cells (alternately, can use
multinomial theorem or induction on formula.))

104

www.manaraa.com

Garside's Word Problem Algorithm

(QED)

As a side-theorem, we get from the above two:
m!>((m/j)!)**j*(j1)**(m/j).

III.F.3 The relation between NUMNODE and NUMEDGE

We have the bound following bound in general:

NUMNODE-2 NUMEDGE < NUMNODE*n

where n = number of generators.

Proof: Out-valence of word-diagram is at most n.

(QED)

The thinnest (or smallest) word-diagrams are the
linear graphs. They have the smallest ratio, between
NUMNODE and NUMEDGE. For these graphs, NUMEQ=1.

Theorem: The only words with linear graphs as
word diagrams are of the following forms:

105

www.manaraa.com

Garside's Word Problem Algorithm

l**k, 2**k, ..., n**k, and any prefix or suffix
(or center-word) of the words

u = (I**(kl)2**(k2)3**(k3)...n**(kn)) or

w = (n**(kn)...3**(k3)2**(k2)1**(kl)) or

u(l)w(l)u(2)w(2)...u(p)w(p) where p,k,kn,kl are
greater than or equal to one and adjacent u's and w's
have a common generator at their boundaries.

Proof: By exhaustion of prefix and suffix cases.
QED

III.F.4 Some Computed Combinatorics of Word-Diaqrams

FW 121 | 123121l 1234123121 |
NOMNODE 6 11 24

i
120 |i

NUMEDGE 6 1j 36l
1240 j

NUMEQ 2 1
1 16 768 |

Note: 12312 had only 12 nodes, 15 edges, and 5
paths.

106

www.manaraa.com

Garside^ Word Problem Algorithm

Note: 123412312 had only 60 nodes, 108 edges, and
168 paths. Compare these with the FW statistics above.
The statistical patterns of Xi word-diagrams merits
further analysis. Complexity of the positive word
translation depends upon this.

10.7

www.manaraa.com

Garside's Word Problem Algorithm

Asymptotics of FW**k in B(3)
Word-Diagram Statistics for (121)**k

k NUMNODE NUMEDGE NUMEQ RATIO
1 6 6 2 3.1
2 19 24 8 2.5
3 48 66 38 2.3
4 109 156 196 2.16
5 234 342 1062 2.08
6 487 720 5948 2.04
7 996 2.025
8 2017 2.0138
9 4062 2.007

10 8155

NUMNODE((121)**(k+l))
RATIO means: ------------------------

NUMNODE((121)**k)

Note that the asymptotic behavior of RATIO tends
toward 2.00 and that even the fractional-residues
appear to be decreasing by a factor of 2. No reason
has been found. This is one of very few examples of
exponential growth of word-diagrams with respect to
word length.

108

www.manaraa.com

Garside's Word Problem Algorithm

III.F.5 A Worst Case for Word-Diagrams; Fundamental
Words

Lengthy enumerations show that the fundamental
words result in the largest word diagrams. For greater
word-lengths, multiple copies of the fundamental word
are the worst case. Though these tests were carried
out upto word lengths of 20 (in B(3)) and less in
B(n+1) (n < 10) , the behavior seems to hold true;
however, this remains a conjecture for. the untested
cases.

Conjecture: The word-diagram for the fundamental
word FW(n) has growth rate NUMNODE(FW(n)) =
Factorial(n).

In fact, the nodes of the word-diagram for' the
fundamental word can be labelled with permutations,
exactly matching the symmetric group S(n). The
generators labelling the edges correspond to
transpositions exactly. Generator i corresponds to
transposition (i i+1).

109

www.manaraa.com

Garside's Word Problem Algorithm

The distance from the origin corresponds exactly
to the number of transpositions in each permutation.
One can show this from the patterns and factorizations.

The final node of the word-diagram has the
tpermutation:

/ 1 2 3 4 ... n\
()\ n n-1 n-2 n-3 ... 1/.

As expected, this last node will have length
(n)(n+l)/2, the distance of the word-diagram.

Very Important Note: A large word-diagram doesn't
just affect the word-diagram size as is; every
positively equal word represented will each contribute
the whole size also. So, for the above, the effect of
this theorem will be Factorial (n) * (NUMEQ (FW)), the
latter term being extremely large.

III.F.6 Partial Results Toward Factorial Conjecture

Theorem: The node with distance=l (from the
source) include l,2,3,...,n (ie. the single
transpositions.)

110

www.manaraa.com

Garside's Word Problem Algorithm

Proof: In the last step of the Xi theorem
(constructing the positive word corresponding to a
negative generator), FW is expressed with potentially
any generator in front.

(QED)

Theorem: The word graph for the fundamental word
is symmetrical (with respect to origin and final node.)

Proof: Garside's thesis, theorem- 3(ii) states
that "Rev(fw) is positively- equal to fw". (QED)

Other partial results can be developed likewise.
Note that even though Coxeter and Moser describe the
relationship between the braid group and S(n), the
word-diagram1s restrictions prevent any apparent
application of such results.

An incremental word diagram theory seems like a
fruitful endeavor but it is too complex due to the
large number of cases. Perhaps using recurrence
relations or inclusion exclusion may help. No operator
theory for graphs has been developed yet. Prefixes and
suffixes don't help much in terms of the strings.
String transformations seem to resonate throughout a

1 1 1

www.manaraa.com

Garside's Word Problem Algorithm

string rather than remain local or affect one
direction.

III.F.7 Important Corollaries to the Factorial(n)
Con j ecture

Note: If the Factorial(n) conjecture holds for
the fundamental word, then the breadth (or fatness) of
the word-diagram will be at least Factorial(n)/(
(n)(n+l)/2), which is about 2*Factorial(n-2). This
will have considerable importance with the next
subchapter on asymptotics.

Note: The above breadth condition would have
strong ramifications upon the complexity of the variant
algorithm we gave for Garside's algorithm. If we
combine the next result (in the asymptotics subchapter)
with the above results on 2*Factorial(n-2), then the
number of non-deterministic decisions needed to
transform one arbitrary path through the word-diagram
into the maximally-FW prefixed path will be the average
time complexity of the variant-Garside algorithm.
Furthermore, the maximal number of s.teps to do this
transformation will be the worst case behavior of the

112

www.manaraa.com

Garside's Word Problem Algorithm

variant-Garside algorithm. In fact, the Garside
algorithm's complexity will also be determined by it.
Many powerful results just depend upon proving the
conjecture (ie. Factorial(n).)

Note: Attempting to write a backtracking
algorithm to simulate the oracle seems impossible
unless much space is wasted (upto quadratic space) or
time (exponential at worst) or both. Even on small
examples, the only way found was brute force.

III.F.8 Asymptotics of Word Diagrams

Asymptotic Theorem: As word length tends toward
infinity then the word-diagram has very high
probability of having the breadth of at least the
fundamental word (throughout the whole diagram.)

Proof: As word length tends toward infinity, the
probability of a word having at least one copy of the
fundamental word is one. This is especially true
because the transformation of the negative generators
into positive words results in words which are almost
the fundamental word.

113

www.manaraa.com

Garside's Word Problem Algorithm

By commutativity, one copy of the fundamental word
can commute the whole length of the word-diagram.
Therefore, the word diagram will have have the breadth
of the word-diagram for the fundamental word throughout
the length of the word-diagram. (QED)

This is not a very sharp bound because it is
linear with respect to the length of the braid word.
It does not express the "central bulge" of most word
diagrams.

Theorem: If we fix the length of a positive word,
then (after a point), changing the generator structure
of the word will produce no larger word-diagrams.

Proof: If we produce the largest word diagram of
a given length, then it can have finitely many
positive-relator substitutions with the number of
distinct generators it is using. This is true because
no positive relation (or substitution) can create a new
generator. In simpler terms, if we have 143413133443,
then by using positive substitutions, we can never get
generator 2 in there.

114

www.manaraa.com

Garside^ Word Problem Algorithm

(QED)

So for a given length category, there is a
maximally-sized word-diagram. We know this is
certainly not true for most algebraic systems.

III.F.9 The Word Diagram as a Poset

Theorem; A word diagram (of a positive word in
B(n+1)) is the graph of a partial order.

Proof: It suffices to show that the graph is an
acyclic digraph (via the following proof by
contradiction.) If the word graph has a cycle, then it
would characterize an infinite set of words. Since all
words in the word graph have equal length, there can
only be finitely many of them. Hence the contradiction
arises. (QED)

Con jecture: A word diagram (of a positive word in
B(n+1)) is a lattice.

Though this is a conjecture, a large sample of
computer generated word diagrams were tested with
positive results. Weaker theorems can be proven by the
relators but are too localized.

115

www.manaraa.com

Garside's Word Problem Algorithm

Note: One possible proof of this could be
developed by the permutational representation of the
word diagram in conjunction with the factorization
conditions needed for a lattice.

III.F.10. Construction of the Worst Case Complemented
Poset with Bounded Maximal Valence

In the process of studying word-diagrams, I have
produced a beautiful example of recursively defined
category of worst-case complemented posets with bounded
maximal valence. The beauty of it lies in the proof
that it is the worst case. The proof emerges
recursively as the poset grows.

Further details can be provided.upon notice.

III.G The Word Diagram: Computational Aspects

There are a number of possible ways, to compute the
word diagram of a positive word. In this chapter we
deal with some of them.

116

www.manaraa.com

Garside's Word Problem Algorithm

III.G.l Simple Closure Algorithm

Pack the initial spine of the word diagram (ie.
the initial braid work in the lowest (or first) nodes
in the linked list. Then, sequentially traverse this
list repeatedly until no new nodes can be created. At
each node traversed, apply all the relevant generators
that have not produced an out-1ink.

This algorithm's space utilization grows
monotonically, hence space and time complexity are very
closely related. It appears to be fast and efficient
in space usage. For two generators, it vorks perfectly
and is extremely fast. Unfortunately, for larger n, it
wastes much space and (due to the looping for closure)
wastes much time too. In fact, it becomes
unnecessarily exponential. The key to this is that it
generates nodes in one loop before it computes the
edge-closure of the other nodes previously created in
the same traversal pass.

The real cause of this redundancy is a link that
is duplicated. Once a link is duplicated, the
subgraphs to be generated out of it are duplicated. So
it grows exponentially as each single duplicate link

117

www.manaraa.com

Garside's Word Problem Algorithm

reproduces whole subgraphs. On long strings, the
effect is devastating.

This algorithm is the first one implemented and
therefore the one used in the appendix of this text.
In this program, the words’ 14364 and 14346 differ by
one redundant node, due to creation of a node before an
edge-closure test. This is the first case of it.
Though a little too large to duplicate, the diagram
actually shows where the redundancy occurs.

To remove the redundancy, node deletion and
merging should occur but the tests for duplication are
to expensive in time for this model and the redundancy
is found out too late.

118

www.manaraa.com

Garside’s Word Problem Algorithm

Statistics for the Redundant Word-Diagram Size
(using the Simple Closure Algorithm)

NUMSTRAND
4 5 6 7 8

Length=5 |
AVE. |i 9.7 11.09 12.3 0 13.59 114.68 jl1MAX. ji 12 18 18 25 125 j

I1SAMPLE | 2100 3800 10000 4000 18000 j
Length=10|

AVE. | 1 38.7 45.0 55.6 68.4 181.6 j
I1MAX. |

i
112 129 203 247 1289 j

I1SAMPLE j 2300 5000 11900 6000 18000 j
Length=15|

AVE. | 121.3 133.9 1
111MAX. j

i
620 >1000 1

111SAMPLE | 2500 1000 1
1

Note: Length refers to word length.

119

www.manaraa.com

Garside's Word Problem Algorithm

III.G.2 Simple Creation-Closure Phase Algorithm

This is another very time wasteful policy, far
worse than the previous one (appearing to be quadratic
in the previous one.) No space is wasted and the exact
word-diagram is produced. This version of the
algorithm was also programmed.

Basically, take the previous version but each time
a node is created, a whole edge-closure traversal must
be done. After that only can a next node be created.

Though this seems like brute force, the
consistency of the algorithm is retained with minimal
space usage.

Statistics for the Exact Word-Diagram Size
(using the Simple Closure Algorithm)

NUMSTRAND=3
(Word length=l)

1=5 1=10 1=15 1=20 1=25

AVE. 19.05 |i 35.8 1108.7 j1 292 1745 j 1
MAX. 112 |j 63 234 | 741 12528 jI

SAMPLE 5600 | 3800 1250 | 2500 121000 j

120

www.manaraa.com

Garside's Word Problem Algorithm

III.G.3 Backpath-Closure and Creation Algorithm

Same as the first policy but allow for the merging
of backward relation paths. By merging them, some
redundancies can be avoided but I don't know if all of
them can be removed as in the second policy. This has
not been tested as a program.

III.G.4 Creation-Deletion Algorithm

This is a non-monotonic approach where the nodes
are created as in the first process except where a
redundancy occurs, a redundant path is selected for
deletion. Which one of the paths is up to the
programmer; however, be very careful not to enter an
infinite loop of regenerating and deleting the same
path. Though great for efficiency, this algorithm is
hard to test for correct behavior.

121

www.manaraa.com

Burau Representation Algorithm for B(n+1)

IV.0 Burau Representation Algorithm(?) for B(n+1)

IV.A Burau Representation

Def: A group R is a representation of a group G
if there exists a homomorphism h:G— >R.

Def: A representation is faithful if the
homomorphism is one-to-one. Burau[1936] demonstrated a
potentially faithful matrix representation for B(4)
given below.

The Burau representation is a matrix group
consisting of matrices with entries from the integer
coefficient polynomials in variable t and 1/t where t
is a rational. The group's elements are formed by
taking all matrix products of the following six
matrices:

122

www.manaraa.com

Burau Representation Algorithm for B(n+1)

Burau representation of B(4) over Z[t,t**(-1)]
where t is in

s(l) — > |-t 1 0|
1 o 1 0|
1 o 0 11

s (2) — > | 1 0 0|
1 t -t H
1 o 0 i|

s (3) — > | 1 0 0|
1 o 1 o|
1 o t -t|

0 1 0 j
0 O i l

I 1 0 0 || 0 -1/t l/t|
1 0 O i l

1 0 0 |
0 1 0|
0 1 -1/t|

where s(i) = ith standard braid generator

An open problem that remains outstanding (despite
many efforts) is to show that the mapping is faithful.
As a matter of convenience, it shall henceforth be
called the Burau Conjecture.

To prove it true, we need to show that a braid
word is the identity if it's representation (a matrix
product) is the identity matrix.

123

www.manaraa.com

Burau Representation Algorithm for B(n+1)

Example: l'S'IS = identity would then require the
following product in the matrices of polynomials in the
Burau representation:
|-1/t 1/t 0| |1 0 0|
I I I Ij o 1 oj jo 1 0|
I II I| 0 0 1| |0 1 -1/tI

IV.B Burau Representation Algorithm(?)

Burau Algorithm for B(4):
StepO: Burau: Procedure;

Stepl: Declare (MATRIX,WORK) as a 3 by 3 matrix,
each entry of which is a 1-dim. array
of coefficients of a polynomial in
t and t**-l; these coefficients have
indices (-P to +P).

READ BRAID WORD W=ala2...am;

Step2: MATRIX = IDENTITY-MATRIX;

Step3: MAINLOOP: DO IPOS = M TO 1 BY -1;
GEN .= GENERATOR IN POSITION IPOS IN W
CALL PRODUCT(GEN,MATRIX);

■t 1 0| |1 0 0| | 1 0 0 |
n 1 = 1 i

0 1 0 | jo 1 oj = | 0 1 0 |
II 1 = 1 I0 0 1| 0 t -t 0 0 II

Step4: END MAINLOOP;
124

www.manaraa.com

Steps:

Step6:

Step7:

Step8:

Step9:

Step10

Stepll

Burau Representation Algorithm for B(n+l)

IF (MATRIX = IDENTITY-MATRIX)
THEN PRINT 'TRUE; MATRIX IS IDENTITY.'
ELSE PRINT 'FALSE; MATRIX IS NONTRIVIAL.'

END BURAU;

/* THE REMAINDER OF THIS PROGRAM IS THE */
/* SUBPROCEDURE PRODUCT. */
/* THIS PROCEDURE COMPUTES; */
/* MATRIX = REPRESENTATIVE(GEN)*MATRIX*/
PRODUCT: PROCEDURE(GEN , MATRIX);

DECLARE AND STORE BURAU REPRESENTATION AS
SIX MATRICES; BUR(6).ELEMENT(3,3).

RESET WORK TO ZERO MATRIX;

/*DO STANDARD MATRIX PRODUCT TRIPLE LOOP*/
ILOOP: DO I = 1 TO 3;
JLOOP: DO J = 1 TO 3;
KLOOP: DO K = 1 TO 3;

/★PICK THE ENTRY OF THE BURAU REP. IN */
/* POSITION (I,K) TO MULTIPLY WITH. */
TENTRY = BUR(GEN).ELEMENT(I,K);

125

www.manaraa.com

Burau Representation Algorithm for B(n+1)

Stepl2:

Stepl3:

Step14:

Stepl5:

/* MAIN DO-CASE HANDLES (I,K)*(K,J) */
B1GCASE:DO CASE;

Casel: Caseif (TENTRY = 0);
/*do nothing, really adding O-vector*/

End Casel;

Case2: Caseif (TENTRY = 1);
/*add two polynomials*/
/*add bur(gen).ele(i,k)*matrix(k,j) */
/* to work(i,j). */
/* Note: bur(gen).ele(i,k)=l */
WORK(I,J) = ADDVEC(MATRIX(K, J),WORK(I,J));

End Case2;

/♦before doing any more cases, define */
/* procedure ADDVEC --- a function */
/* which adds two vectors and returns */
/* their sum as the value of ADDVEC. */
ADDVEC: PROC(VECT0R1 , VECT0R2);

PO KA = -P TO +P ;
SUM(KA) = VECT0R1(KA) + VECT0R2(KA);

END;

126

www.manaraa.com

Burau Representation Algorithm for B(n+1)

Stepl6:

Stepl7:

Stepl8:

RETURN (SUM(-P : +P)) ;
END ADDVEC;

Case3: Caseif (TENTRY = -1);
/★subtraction between two polynomials*/
/★add bur (gen) ,ele(i,k) *matrix(k, j) */
/* to work(i,j). */
/* Note; bur(gen).ele(i,k)=-l ' */
WORK(I,J)= ADDVEC(-MATRIX(K,J),WORK(I,J));

End Case3;

Case4; Caseif (TENTRY = t);
/★add two polynomials*/
/★add bur(gen).ele(i,k)*matrix(k,j) */
/* to work(i,j). */
/* Note; bur(gen).ele(i,k)=t */
/* t*poly(t) = right shift poly(t) */
WORK(I,J) = ADDVEC(SHIFT('RIGHT',

MATRIX(K,J)),WORK(I,J));
End Case4;

/★before doing any more cases, define */
/* the vector-valued function SHIFT */
/* which just shift coefficients of */

127

www.manaraa.com

Burau Representation Algorithm for B(n+1)

/* a poly, in an array by 1 position. */
SHIFT:PROCEDURE(DIRECTION , VECTOR)?

IF (DIRECTION = 'LEFT1) THEN
LEFTCASE: DO;
DO Q = -P+l TO P;

VECTOR(Q-l) = VECTOR(Q)?
END?
VECTOR(P) = 0 ?
END LEFTCASE ?

ELSE
RIGHTCASE: DO;
DO Q = -P TO P-l?

VECTOR(Q+l) = VECTOR(Q)?
END?
VECTOR(-P) = 0 ?
END RIGHTCASE;

RETURN(VECTOR);
END SHIFT;

Stepl9: Case5: Caseif (TENTRY = -t) ?
/*Subtraction of two polynomials*/
/*add bur(gen).ele(i,k)*matrix(k,j) */
/* to work(i,j). */

128

www.manaraa.com

Burau Representation Algorithm for B(n+1)

/* Note: bur(gen).ele(i,k)=-t */
/* -t*poly(t) = right shift -poly(t) */
WORK(I,J) = ADDVEC(SHIFT('RIGHT',

(-MATRIX(K,J))),WORK(I,J))?
End Case5;

Step20: Case6: Caseif (TENTRY = 1/t);
/*add two polynomials*/
/*add bur(gen).ele(i,k)*matrix(k,j) */
/* to work(i,j). */
/* Note: bur(gen).ele(i,k)=l/t ‘ */
/* l/t*poly(t) = left shift poly(t) */
WORK(I,J) = ADDVEC(SHIFT('LEFT',

MATRIX(K,J))/WORKfl,J));
End Case6;

Step21: Case7: Caseif (TENTRY = -1/t);
/*add two polynomials*/
/*add bur(gen).ele(i,k)*matrix(k/j) */
/* to work(i,j). */
/* Note: bur(gen).ele(i/k)=-l/t */
/* -l/t*poly(t) = left shift poly(t) */
WORK(I,J) = ADDVEC(SHIFT('LEFT',

129

www.manaraa.com

Burau Representation Algorithm for B(n+1)

-MATRIX(K, J)),WORK(I,J));
End Case7;

Step22: END BIGCASE; /*end the DO CASE */
END KLOOP;

END JLOOP;
END ILOOP;

END PRODUCT; /* END OF SUBPROCEDURE */

Warning: This program is correct for WP(B(4)) iff
the Burau conjecture is true. Evidence of the latter
will be presented in a later subchapter.

If the Burau conjecture was not true, then this
algorithm will accept (as identity braids) some
non-identity braids. Either way, this algorithm is a
valid sufficient condition for a 4-braid not being the
identity.

130

www.manaraa.com

Burau Representation Algorithm for B(n-fl)

IV.B .1 Complexity of the Algorithm

The space bound for this algorithm is:

0(2(9*2m)) = 0(m) coefficients.

The nine arises from the number ' of polynomials..
The first two arises from the fact that t*Poly(t) and
l/t*Poly(t) cause a two directional growth for each
polynomial. The second two arises from the necessity
of a Work array. Other intermediate computations
require temporary space, bounded by 5m coefficients.

Each coefficient can grow in value (at worst) as
3**m (this is an upper bound which is clearly not
tight.) To see this, note that at each matrix product
step, each new polynomial will be the sum of three
previous polynomials.

On a base three machine, each new matrix product
requires each coefficient to expand by one more digit.
On a base-k machine, the result still remains a
constant growth at each product step, hence 0(m) new
bits per step.’

131

www.manaraa.com

Burau Representation Algorithm for B(rH-l)

So the space complexity is at worst bounded by
0(m**2).

The time complexity is at worst bounded by
m*9*3*2m additions and shifts. Since the additions
occur over linearly growing coefficients, this would
seem to give 0(m**2*log(m)) but the shifts occur over
linearly growing coefficients, so assuming a
fixed-word-size machine, each shift will require linear
time. So the final bound is cubic time.

Problem: For the average case behavior,* the
central issue involves how sparse are these matrices in
general. During implemented runs, some sparse cases
were observed (some with interesting patterns) but
occurrence was infrequent.

The next section introduces a superior algorithm
in terms of space requirements.

IV.C The Lipton-Zalcstein-Burau Algorithm

Lipton and Zalcstein[1977] proved that if a group
is linear, then it's word problem is solvable in
logspace.

132

www.manaraa.com

Burau Representation Algorithm for B(rH-l)

If Burau's conjecture is true, then B(4) is a
linear group. Lipton and Zalcstein[1977] proved part
of their theorem by constructing a logspace algorithm
for linear groups. Therefore, the Lipton-Zalcstein
algorithm can "solve" WP(B(4)) in logspace (ie.
"solve" in the sense of the Burau algorithm, except
more efficiently.)

IV.D Word Problem for B(3) is Solvable in Logspace

B(3) has a faithful Burau representation; hence,
it is a linear group. Therefore, the word problem for
B (3) is solvable in logspace (ie. solvable in the
absolute sense, without dependence on conjectures
holding.) The algorithm is that of Lipton and
Zalcstein[1977].

IV.E The Burau Conjecture: New Insights

Reversing the reasoning in the previous section,
if a logspace algorithm for WP(B(4)) exists, then it
would act as more evidence toward showing B(4) is a
linear group. This would not prove the Burau
conjecture because this can't prove that the Burau

133

www.manaraa.com

Burau Representation Algorithm for B(n+1)

representation is the right one (ie. the faithful
one), as well as not proving even linearity. However,
the logspace algorithm would add further evidence that
the Burau conjecture is true. So far, there is a long
history of papers building up evidence, as described in
the next section. The nature of the conjecture is
intrinsically complex.

A proof that no logspace algorithm exists for
WP(B(4)) would result in the Burau conjecture being
false. In a later chapter on Lisa's algorithm, this
will appear to be the case. Despite many unsuccessful
trials, an even newer "algorithm" is presently being
constructed which has the logspace feature but is not
completed yet (due to its' length.)

IV.F Previous Results Toward the Burau Conjecture

In general, Burau showed that B(n+1) has the
representation:

134

www.manaraa.com

Burau Representation Algorithm for B(n+1)

sigma(i) =

where: I(k)
A

I(i) 0 0
0 A 0
0 0 I(n-i-l)

kxk identity matrix
1 1-t t |I II I 0 |

Gassner[1961] gave a representation for the
unpermuted subgroup of B(n+1).

Magnus and Peluso[1967] showed that the Burau
representations of B(2) and B(3) are faithful.

Birman[1974] showed that the Burau representation
for B (4) is faithful iff the group GM generated by the
following two matrices a and b:

-t 1 0 I 1 1 1 1-t -1/t 1/t |
a. = 0 1 1 Io I , b = 1i 1—t**2 -1/t o 1

0 1 1 1 -l/t| | 1 -1/t o I
is free.

135

www.manaraa.com

Burau Representation Algorithm for B(n+1)

Birman[1974] also provided a complete review of
the previous results but in a more general setting, as
well as very powerful new results associating the
categories of Magnus representations, the Alexander
polynomial, and some decision procedures.

Magnus and Tretkoff[1980] proved that the
linearity of Aut(F(2)) implies the linearity of
Aut(F(n)).

Siegfried Moran[1980] showed that {a,c> generate a
free group (where a and b were the matrices of GM and
c=ab'.) Furthermore, he demonstrated that {a',cac}
generate a free group, as well as other similar sets.

Dyer, Formanek, and Grossman[1981] showed that
linearity of Aut(F(2)) is true iff B(4) is linear.

Craig Squier[1984] showed that a variant of the
Burau representation is unitary and reduced the Burau
conjecture to two others. Unfortunately, neither
conjecture has been proven. They involve the
relationship between kernels in a mappings involving
the addition of relators of the form s(i)**k for all i
(where k is fixed.)

136

www.manaraa.com

Burau Representation Algorithm for B(rH-l)

Among other important recent papers are those of
Lipschutz[1961], Gorin and Lin[1969], Tits[1972], and
Dixon[1972].

IV.G Partial-Computation for Faithfulness Testing

By treating program Burau as a subroutine in a
larger program for enumerating braids and also
inserting the Artin algorithm as a subroutine, we have
an procedure for recursively enumerating braids which
act as counterexamples to the Burau conjecture.
/*Partial-Test for Faithfulness*/

StepO: W=l;

Stepl: LOOP FOREVER;

Step2: CALL ARTIN(W);

Step3: IF (ARTIN RETURNS FALSE) THEN
/* nontrivial braid*/
CALL BURAU(W);
IF (BURAU RETURNS TRUE) THEN

PRINT, W 'DISPROVES BURAU CONJECTURE1;
STOP;

137

www.manaraa.com

Burau Representation Algorithm for B(rH-l)

ENDIF;
ENDIF;

Step4: L = LENGTH(W);

Step5: CALL NEXTWORD(W);
/* this subroutine generates the next */
/* braid word W in a breadth first */
/* way, returning it in W. */

N

Step6: K = LENGTH(W);
IF (L < K) THEN

PRINT 'BURAU CONJECTURE IS TRUE FOR' ?
PRINT 'ALL WORDS OF LENGTH = ' L 7

ENDIF;
Step7; END LOOP /*forever*/?

END-OF-PROGRAM

This program was run for all braid words of length
upto and including nine but with no resulting
counterexamples. Hence Burau's algorithm and the
others based on the Burau conjecture work for braids of
length nine. At the very least, it adds further
evidence that the Burau conjecture may be true.

138

www.manaraa.com

Burau Representation Algorithm for B(n+1)

A proof that the Burau conjecture holds for all m
if it holds for all m less than a certain k seems like
a possibility.

IV.H Lie Ring Representation Algorithm for B(4),

S. Lipschutz[1961] characterized important
subgroups of B(4) in terms of automorphisms of free
rings. This alternate approach warrants further
analysis.

139

www.manaraa.com

Combing Algorithm for B(rH-l)

V.0 Combing Algorithm for B(n+1)

V.A Braid Word Formalism

L. 0. James[1971] devised an alternate notation
for braids. In the L. 0. James notation, a braid is
represented as a finite sequence of integer pairs, the
first number in the pair unsigned, the other signed.
Each generator in the standard notation becomes one
pair in the James notation. In the L. 0. James
notation, each strand's original input number is used
throughout the notation.

So, (a -b) means strand a goes under strand b.

V.A.l An Example of the James Notation

Starting with braid 1 12 11'212, we
vector and apply those transformations:

Vector Transformation

1 , 2 , 3 , 4
----------------------- ! i (1 - 2)

2 , 1 , 3 , 4
------------------- 2' (1 -3)

construct a

Notation

140

www.manaraa.com

Combing Algorithm for B(n+1)

2 , 3 , 1 , 4
-3)

1)

1)

2)

Note: The vector records the effects and’ the
strands affected. The James notation then records the
affected strands.

V.B More Definitions

Def: A braid is unpermuted iff the order of the
output strands matchs the order of the input strand.
In other words, the permutation resulting from the
braid is the identity.

Example: .123 is a permuted braid while 1111 and
1212•1*2' are not.

3 , 2 , 1 , 4

3 , 1 , 2 , 4

1 , 3 , 2 , 4

(2

(2

(3

(3

141

www.manaraa.com

Combing Algorithm for B(rH-l)

Def: A braid C is in combed iff it is unpermuted
and it has the structure clc2c3c4c5...cn where ck is a
subbraid in which only the kth strand is permitted to
move (or cross) over or under any other strand provided
that the other strand has a higher strand number (ie.
k+1, k+2, ..., n.)

Example: 1123322332 is a combed braid where cl=ll
and c2=23322332.

Artin[1950] showed that, after free-reduction, the
combed form of a braid is unique.

V.C The Combing Algorithm

V.C.l Notes

The combing algorithm used takes a braid in
standard notation and converts it into James notation.
Unlike combing, I first test for permutedness (in fact
this is done for free because the notation conversion
involves a vector which already will compute the
permutation. .

142

www.manaraa.com

Combing Algorithm for B(n+1)

Note: A necessary condition for a braid to be the
identity is that the braid be unpermuted. This reduces
time by a factor of Factorial(n).

Note: The core of the combing algorithm
(described below) i*s really a two stack algorithm,
where the finite control looks at the top two pairs on
the stacks and applies productions accordingly. The
first stack (W) starts with the initial braid and the
algorithm halts when the first stack is empty. At the
termination, the second stack (called C) has the final
combed braid. This core algorithm was developed over a
series of papers, primarily Artin[1950], L. 0.
James[1971], Thomas[1971], and Thomas[1972). It was
previously implemented by Luginbuhl[1973] in LISP. The
present PL/I implementation incorporates a variant of
the Luginbuhl algorithm, solving WP(B(n+l)) instead of
combing braids.

V.C.2 The Combing Algorithm

Procedure to Solve WP(B(n+l)) by Combing

comber: proc;

143

www.manaraa.com

Combing Algorithm for B(n+1)

Stepl: Comment: Initialize vector of strands.

/* must initialize vector as <l,2,3,4...> */
del vector(40) fixed bin;
init40: do iv=l to 40?

vector(iv) = iv;
end init4 0 ;

Step2: Read input braid word (BWORD) in
standard notation;

Set stack W to nil.
Set stack C to nil.
Stacks W and C are stacks of pairs (a,b).
/*W is a Work-stack and C is a stack containing */
/* the part of the braid that is combed so far. */

Step3:/*Translate braid word to L.O. James notation.*/
transloop: do itrans = 1 to length(bword.gen);

/* Translate generator to numeric.*/
get string (substr(bword.gen,itrans,1))

edit (ivec) (f(l));
/* Get the strand number which ivec acts on.*/
istrand «= vector (ivec);
/* Compute second element of the James pair.*/

144

www.manaraa.com

Combing Algorithm for B(n+1)

if (substr(bword.expon,itrans,1)=' •) then
posgen: istrand2 = vector(ivec+1);

else
neggen: istrand2 = -vector(ivec+1);

/* Now push on the stack. */
call PUSH((istrand,istrand2) on to W);
/* apply action of generator on the stack.*/
itemp = vector(ivec);
vector(ivec) = vector(ivec+1) ?
vector(ivec+1) = itemp;

end transloop;
/* Now, stack W contains the.initial */
/* braid in L.O.James notation. */

Step4: /* Test if braid is permuted. Delete if so. */

/*Note that the L.O.James algorithm will work */
/* for unpermuted braids; however, that */
/* subgroup contains the identity, so we */
/* need first test if this braid is unpermuted.*/
unperm; do .iperm = 1 to 40;

if (vector(iperm) = iperm) then;
else

145

www.manaraa.com

Combing Algorithm for B(n+1)

permed: do ;
put skip list ('permuted braid has',

' quotient perm: V ,vector) ;
put skip list ('not the identity')?
stop;

end permed;
end unperm;

Step5: Comment: Call the main combing algorithm.
Call C0MB3;

Step6: Comment: Combing routine (begin main loop.)
C0MB3: do ;

/★initial work stack has input braid*/
/★initial combed stack is */
/★ empty (ie. has identity braid)*/

/★loop until work stack is nearly */
/★ empty (ie. all translated into*/
/* combed form in combedstack) */
looptillnearempty: do while (topW > 2);

Step7: /*set up (ie.pop out) context */

146

www.manaraa.com

Combing Algorithm for B(n+1)

/* to apply a production now */
call pop((c,d) off stack W);
call pop((a,b) off stack W);
resetlpair = false;

Step8: /*Main Do-Case will split into types*/
/* of productions. */
MAINDO: DO-CASE;

Step9: /*see if production is a cancellation*/
/* (ie. (c,d)(d,-c) type pair of pairs.)*/
Cancelcase:
Caseif ((c=|b|) & (a=|d| & sign(b)=-sign(d)))

/♦cancellation pair annihilated*/
/♦reset context by one pair to */
/* guarantee correctness*/
resetlpair= true;

End Cancelcase;

SteplO:/*This is the second case.*/
/♦Case of shift pair on to stack C because */
/* combing partial order is satisfied*/
Shiftpaircase;
Caseif (min(c,|d|) >= min(a,|b|)) ;

www.manaraa.com

Combing Algorithm for B(n+1)

/*Shift one pair over to combed, since */
/* interpair order is okay. Keep other */
/* on the work stack for next loop. */
call PUSH((c,d) on to stack C);
call PUSH((a,b) on to stack W);

End Shiftpaircase;
/★The remaining six cases need order change.*/

Stepll:/*Boundary Case (need only switch order) */
Milddisordercase:
Caseif (topC=0) ;

/★empty stack case*/ .
/♦simple switch and shift*/
call PUSH((a,b) on to stack C);
call PUSH((c,d) on to stack W);

End Milddisordercase;

Stspl2:/*A11 remaining five cases need more context */
/* and require more complex productions. */■
COMPLEXPRODUCTION:
DO-CASE’ ;

/★need more context for these productions*/
call POP((e,f) off stack C);

148

www.manaraa.com

Combing Algorithm for B(n+1)

/* to preserve correctness, must reset to */
/* allow next loop to compare these to */
/* previous pairs */
resetlpair=true;

Stepl3:/*First of the complex productions*/
Prodlcase:
Caseif (a=c & c=|f| & e=|d|) ;

call PUSH((|b| , -sign(b)* |d|) on to stack W)
call PUSH((a / d) on to stack W)
call PUSH((|d| , sign(d)*a) on to stack' W)
call PUSH((|d| , b) on to stack W)
call PUSH((a / b) on to stack W)

End Prodlcase;

Stepl4:/*Second of the complex productions*/
Prod2case:
Caseif (a=c & |d|=|f| & e=|b|);

call PUSH((|b| ,-sign(b)* td|) on to stack W);
call PUSH((a , sign(d)* Id) on to stack W);
call PUSH((a / b) on to stack W);
call PUSH((|d| / b) on to stack W);
call PUSH((|b| , sign(f)* Id]) on to stack W);

End Prod2case;

149

www.manaraa.com

Combing Algorithm for B(rH-l)

Stepl5:/*Third of the complex productions*/
Prod3case:
Caseif (a=|f| & |b|=|d| & e=c) ;

call PUSH ((c, -sign(b)*a on to stack W);
call PUSH ((c, sign(d)*|b| on to stack W) ;
call PUSH ((a, b on to stack W) ;
call PUSH ((a, sign(b)*c on to stack W) ?
call PUSH((c, sign(f)*a on to stack W) ;

End Prod3case;

Stepl6:/*Fourth of the complex productions*/
Prod4case:
Caseif (|b|=|d|& e=|d|& c=|f|& sign(d)=sign(f));

call PUSH((c ,-sign(b)*a) on to stack W) ;
call PUSH((c , sign(d)* |bf) on to stack W);
call PUSH ((|b| , sign(d)*c) on to stack W)
call PUSH ((a , sign(b)*c) on to stack W)

call PUSH ((a / b) on to stack W);
End Prod4case;

Stepl7:/*Fifth of the complex productions*/
ProdScase:

150

www.manaraa.com

Combing Algorithm for B(n+1)

/* Otherwise Case*/
Caseif (TRUE) ;

/*need to reorder only */
call PUSH((c, d) on to stack W);
call PUSH((a, b) on to stack W);
call PUSH((e, f) on to stack W);

End Prod5case;

Stepl7.5: /*Close all DO-CASEs*/
End COMPLEXPRODUCTION;

End MAINDO;

Stepl8:/* Handle cases here where a reset is needed */
/* before next loop to maintain consistency */
/* (ie. leave partial order consistency work */
/* for the boundary between stacks for later.)*/
if (resetlpair & (topC>0)) then

do; /*must move context back to stack W*/
call POP((c,d) from stack C);
call PUSH((c,d) on to stack W);
/*Next loop will "comb-up" the */
/* context just added. */

end;

151

www.manaraa.com

Combing Algorithm for B(n+l)

Stepl9: /* Close Main Loop and Print Output*/
End looptillnearempty;
©utputstage: do;
if (topC=0)
then put skip list('braid is the identity');
else put skip list ('braid is not trivial.');

end outputstage;
end C0MB3;

end comber;

End of Combing Algorithm for WP(B(n+l))

V.D Combinatorial Analysis of Combing Algorithm

Analysis still in progress. Problem; proof falls
into twenty-three cases, each requiring a closure proof
(for no more cases.) Even then, each case will have a
difference equation inter-related with the others;
even if they prove decomposable, the distributions of
initial words, over which they operate has to be
determined. Even asymptotically, this is not uniform
and requires more time.

152

www.manaraa.com

Combing Algorithm for B(rH-l)

The Monte Carlo analyses will demonstrate the
irregular behavior, especially the enumerations over
long words.

V.E Monte-Carlo Analysis of Combing Algorithm

Measures Used;

AVCOMBEND = average size of topC at end-of-run
(when exit occurs from the main loop.)

AVCOMBALL = average size of all topC (during all
stages in progress.) Actually, this is the average for
all times through the main loop.

AVWORKALL = average size of all topW.

Note; AVWORKEND=0 since stack W is empty (as a
loop exit condition.)

MXCOMBEND = Maximum topC at end-of-run.

MXSUMALL *= Maximum of all stack sums (ie.
topC+topW) for all times through the loop (as well as
end-of-runs.)

153

www.manaraa.com

Combiner Algorithm for B(n+1)

Note: MXSUMEND=MXCOMBEND since topW=0 at
end-of-runs.

Note: All these measures are in number of
integers used. So the above values are two times the
number of pairs stored in the respective stacks used.

Combing Statistics for: n=2

n=number of generators , l=length of braid word
1=2 H II 1=6 1=8

1AVCOMBEND j
1I .

2.00 1j 4.462 1j 7.381
1

10.065 |
1
1AVCOMBALL |
1I .

1.00 1j 3.143
1

| 4.845
1

6.152 |
1
1AVWORKALLj
1I „

1.00 1j 6.750
1

1j 11.609
1

15.370 |
1

MXSUMEND |
11 «

4 1j 20
1

1j 40
I

60 |
1
1MXSUMALL |
1

4 1j 28
1

1j 64
1

100 |

154

www.manaraa.com

Combing Algorithm for B(n+1)

For n=2, MXSUMEND=MXSUMALL for lengths m = 2, 4, 6,
and 8. Their corresponding worst case braid-words were:

m=2
m=4
m=6
m=8

Combing Statistics for: n=3

n=number of generators , l=length of braid word
v 1=2 1=4 1=6

1AVCOMBEND j
11 -

2.00 | 4.423
1

1j 7.511
1

1
1AVCOMBALLj
1 «,

1.00 1| 3.709
1

1| 4.709
1

I
1AVWORKALL j
1i _

1.00 1j 6.234
1

1j 10.649
1 1=8

1
MXSUMEND |

1
4 1| 20

1
1| 60
1

partial answer |
148 j

1
1
1MXSUMALL j .4 1| 28

1
1
1 76
1

partial answer |
184 |

1

11
2211

222211
22222211

155

www.manaraa.com

Combing Algorithm for B(n+1)

For n=3, MXSUMEND=MXSUMALL for lengths m = 2, 4, 6,
and 8. Their corresponding worst case braid-words were:

m=2 | 11
Im=4 I . 2211

m=6 | 332211
Im=8 | 3'23'23'211 =partial answer

Combing Statistics for: n=4

n=number of generators , l=length of braid word
1=2 1=4 . 1=6

1AVCOMBEND j
11 .

2.00 1| 4.343
1

1 1 j 7.296 j
1 1

1
1AVCOMBALLj
11 .

1.00 1j 2.464
1

1 1 j 4.188 j
1 1

1
1AVWORKALL j
1

1.00 1| 5.913
1

| 9.7827 |
1 1

1MXSUMEND j
1I .

4 1j 20
1

1 1 j 60 j
1 1

1
1MXSUMALL j
1

4 1j 28
1

1 1 1 76 j
1 1

156

www.manaraa.com

Combing Algorithm for B(n+l)

For n=4, MXSUMEND=MXSUMALL for lengths m = 2, 4,
and 6. Their corresponding worst case braid-words were:

m=2
m=4
m=6

Combing Statistics for: n=7

n=number of generators , l=length of braid word
1=2 1=4

AVCOMBEND

AVCOMBALL

AVWORKALL

MXSUMEND

MXSUMALL

2.00 | 4.207 |
1 1

1.00 1 1 | 2.139 |
1 1

1.00 1 1 j 5.476 j
1 1

4 1 1 1 20 j
1 1

4 1 1 1 28 |
1 1

11
2211

332211

157

www.manaraa.com

Combing Algorithm for B(n+1)

For n=7, MXSUMEND=MXSUMALL for lengths m = 2
Their corresponding worst case braid-words were:

m=2
m=4

11
2211

and 4.

158

www.manaraa.com

Combing Algorithm for B(n+1)

One further enumeration was carried out to note
the worst case strings of length eight and three
generators.

m=8 , n=3
String MXSUMEND MXSUMALL

| 2222222211 | 80 1 136 |
| 3322222211 | 148 1 168 1
2 '332222211	168 1 196	
2313 12222211	184	200
2 ' 2'33222211	204	264
3 12231222211	228 1 296	
223'31222211 .	236	308
33213322211	240 1 340	
23 1223122211	296 1 --- 1	
3'23'23‘22211	316 1 384	
2231223'2211 1 --- 1 420		
23'23'23'2211	372 I --	

159

www.manaraa.com

Lisa's Algorithm

VI.0 Lisa1s Algorithm

VI.A Lisa Braids

Def: A Lisa braid is an unpermuted braid, all of
whose 2-subbraids are reducible to the identity.

Example: 131'3' is a Lisa braid.
Example: 1 12'211111221 is not a Lisa braid.

1 2 3
1 2 3
11111111 2 11111111 3 111111

2 3 1
2 3 1
2 1

111111 2 11111111111111111
1 2
1 2 3
1 3
111111111111111 3

1 3
2 1 3
2 1 3
2 1 3

111111 2 111111 3
1 2 3
1 2 3
1 2 3
1
11111111111111111111111111

1
2 3 1
2 3 1

111111 2 11111111 3 111111
1 2 3

1 2 3
1 2 3

160

www.manaraa.com

Lisa's Algorithm

The above is not a Lisa braid because the
1-2-subbraid (ie. the subbraid composed of strands 1
and 2) is nontrivial, specifically being l'l' or
equivalently, [1 2][2 1]. The 1-3-subbraid and the
2-3-subbraid are trivial.

Note: Testing a 2-braid to determine if it is
trivial requires logspace and linear time on a Turing
Machine. Essentially, one sweep is made of the input
tape, counting occurrences of 1' as -1 and 1 as +1. If
the final sum is zero, the braid is the identity.

Note: To determine which braids are Lisa braids,
the standard braid notation cannot be used directly
because the specific strand numbers are not specified
along each step (or generator) in the braid word. So
this notation loses track of the strands and the
subbraids are soon no longer apparent.

The L. 0. James notation follows the strands
exactly. In fact, the James notation specifies the
very pairs that are used. Any two strand subbraid (for
instance a and’ b) can be constructed by picking off all
pairs [a b], [b a], [a -b], and [b -a] sequentially, in
the exact order that they occur.

161

www.manaraa.com

Lisa's Algorithm

Finally, to determine if a two strand subbraid is
the identity, we need only count [a b] or [b a] as +1
and count [a -b] or [b -a] as -1. If the final sum is
zero, then the subbraid is trivial.

If we simultaneously have (n)(n-l)/2 counters,
then if all of them are finally zero, the braid is a
Lisa braid.

VI.B Lisa's Algorithm

Sketchy Version
Stepl: Read braid word W;

Step2: Convert to L. 0. James Notation;

Step3: Using (n)(n-l)/2 counters, sequentially count
off each pair and accordingly add +1 or -1 into
the proper counter.

Step4: If all (counters=0)
then print 'This is a Lisa braid.'

162

www.manaraa.com

Lisa's Algorithm

Note: Since n is fixed beforehand, the n(n-l)/2
is not of real significance.

Note: The James notation requires linear space.
v

To alleviate this gross waste of space, we can develope
one James notation pair at a time, use it in the
computation, and then save space by not storing it.
This gives the final version of the program below:

Lisa's Algorithm
Stepl: Read braid word W=ala2...am?

Step2: Set VECT0R=<1,2,...,n+l>;
/* This is the strand recording vector.*/

Step3: Set COUNTERS(l:n , l:n) = 0?

Step4: LOOP: DO I = 1 TO m ;
/* take i'th generator of W */
GEN = ai ;
STRAND1 = VECTOR(GEN);
STRAND2 = VECTOR(GEN + 1);
IF (GEN is a positive generator) THEN

COUNTERS(STRAND1,STRAND2) =
COUNTERS (STRAND1,STRAND2) + 1 ,*

ELSE

www.manaraa.com

Lisa*s Algorithm

COUNTERS(STRAND1,STRAND2) =
COUNTERS(STRAND1,STRAND2) - 1 ?

ENDIF?
/* now apply action of generator on */
/* strand order vector */
ITEMP•= VECTOR(GEN) ;
VECTOR(GEN) = VECTOR(GEN + 1) ;
VECTOR(GEN + 1) = ITEMP ?

END LOOP?
/*NOTE: In the above code, [i j] and [j i]*/
/* cases are treated as distinct in the */
/* counter sums. This saves time. In the */
/* final step, counters (j,k) and (k,j) */
/* are added together, giving the correct */
/*values. */

Step5: /* final count test */
KLOOP: DO K = 1 TO N?

JLOOP: DO J = K TO N;

IF (COUNTERS(J,K) + COUNTERS(K,J)
= 0) THEN ? /* OK CASE */

ELSE

164

www.manaraa.com

Lisa's Algorithm

DO?
PRINT, W 'IS NOT A LISA BRAID'?
STOP;

END? .
ENDIF;

END JLOOP;
END KLOOP;
PRINT, W 'IS A LISA BRAID'?
STOP?

Note: We need not test if a braid is permuted.
All Lisa braids are unpermuted (because even a single
transposition would result in two strands not being an
identity 2-braid.)

VI.C Analysis of Lisa's Algorithm

VI.C .1 Worst Case Analysis

Space: VECTOR requires (n+1)*log(n+l) bits.
COUNTERS requires ((n)(n-l)/2)(log m) bits.

165

www.manaraa.com

Lisa's Algorithm

Since n is assumed fixed, this gives a logspace
worst case behavior. The exact worst case is bound is
far below this figure but this will suffice.

Clearly, this algorithm requires logspace.

Furthermore, if n is very large, we can represent
the counters as a linked list which can be bounded in
storage requirements by min[(n)(n-l)/2*logm , Smlogm.]

s

The Smlogm is an overestimate of the upper bound for a
binary tree having five fields: left and right links,
both strand numbers, and the actual counter itself.
This model operates on the USE principle; each time a
new i-j-pair is encountered, a new leaf is inserted
with a counter for that pair. In fact, by using a
clever hashing function, we can reduce this further (as
well as reduce time.)
Time: n steps to set VECTOR to 0.

0(n**2) steps to clear the counters.
O(m) steps in the main loop.
0(n**2) steps to test the counters.

166

www.manaraa.com

Lisa's Algorithm

So the algorithm runs in linear time.

Generally, n is not of concern; however, if n is
very large relative to m, then using binary trees (with
a partial ordering of nodes) runs into 0(mlog(n**2)) =
O(mlog(n)) time.

Note: An average case analysis is unnecessary
because even the worst case analysis is better than can
be believed.

Note: This general algorithm is much faster than
the Lipton-Zalcstein-Burau algorithm for B(4).

Unfortunately, this algorithm is not a sufficient
condition test for identity braid .

VT.D Proof: Necessary but Almost Sufficient

Thm: Every identity braid is a Lisa-braid.

Proof1: The null braid is a Lisa-braid (trivial,
since all counters are zero.)

167

www.manaraa.com

Lisa's Algorithm

All free relators are Lisa braid.

All commutative braid relators (eg. 131*3') are
Lisa braids.

All length-six braid relators (eg. 1212'1'2') are
Lisa braids.

If a braid is a Lisa braid, then the insertion or
deletion of a braid relator will result in a Lisa
braid. The argument here is based on counters (ie.
0+0=0 and 0-0=0.) Since this construction generates all
identity braids, all identity braids are Lisa braids.

QED1

As an alternate proof (using contradiction):

Proof2; Assume a braid is not a Lisa braid. Then
two strands exist which cannot be unraveled. By adding
on the remaining strands, those two strands will still
not be ravelable. If a braid cannot be unraveled, then
it is not an identity braid.

168

www.manaraa.com

Lisa's Algorithm

QED2

Unfortunately, the converse is not true.

Thro: There exist Lisa braids which are not
reducible to the identity braid.

Proof: (By counterexample:)

The braid 112'2'2'1'1'222111 is a Lisa braid but
not an identity braid. This is also the smallest known
case of one.

169

www.manaraa.com

Lisa^ Algorithm

Picture of l 12'212'1'1'222111
2 3
2 3

11111111 2 111111111 3 111111
2 3 1
2 3 1
2
2 1 3
2 . 1 3
2 11111 3
2 3
2 3

11111111111111

111111
1
1

1111111111111111111111111
1
1
1111

1111
1
1

2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
3

111111111111111111

11111
1
1

3
3
3
3
3

1
1

111111

11111111111111

111111111

11111111111

11111
1

2
2
2
2
2
2

1
1

1111

3
3
3
3
3
3
3
3
3
3
3
3

1
1

111111

One can prove this is a Lisa braid by either
pulling out one strand (3 cases) or by using the
algorithm. The braid is clearly non-trivial (can be

170

www.manaraa.com

Lisa's Algorithm

proven by heuristics, algorithms, invariant, etc.)

As a alternate example of a non-identity Lisa
braid consider: 111112222221'1'2'2•2*2'2'2'1'1'1'.
This was the first one discovered. (QED)

t

VI.E Final Notes

Lisa's algorithm could possibly be fixed (to
satisfy sufficiency) by analyzing the categories of
counter-example cases. Unfortunately, the ones
described are among the shortest and enumeration would
be impossible with the present generation of computers.
Hours of human labor were required to get a number of
categories. Winding numbers are not sufficient; there
are other categories with bundles of strands which do
not fit the nice model of the counterexamples shown.
Unfortunately, no proof of completeness has been worked
out yet. Despite the large number of classes, these
counterexamples are proportionally extremely rare. If
categorized in easily detected classes, this may be the
first logspace-algorithm for WP(B(n)) for all n.

171

www.manaraa.com

Lisa's Algorithm

As a last attack on the logspace issue, a new
algorithm is still being designed which is strictly
logspace (despite much wasted time (presently quadratic
time.)) Unfortunately, this algorithm has many cases
which have not been worked out yet. It is based on a
number of theorems from the theory of functions.

172

www.manaraa.com

Other Notations and Presentations

VII.0 Other Notations and Presentations

VII.A < a , b ; a**3 = b**2 > Algorithm

Using the < a , b ; a**3 = b**2 > presentation,
we have the following algorithm for WP(B(3)):

The a**2=b**3 Algorithm
PROCEDURE A3B2BRAID;
Assiime input word is

in form W=(a**kl)(b**k2)(a**k3)...(b**kn);
Set CounterA =0; Set CounterB=0;
Start Turing Machine head (TMH) on

leftmost generator;
m345: loop until (TMH moves off word on right);

Do Case
CaseltIF (exponent k>0mod3 and TMH=a) then

do;
CounterA = k - kmod3 +CounterA;
Leave a**(kmod3) in place of a**k;
end;

Case2:IF (exponent k=0mod3 and TMH=a) then
do;
CounterA = k +CounterA;
Remove a**k off tape;

173

www.manaraa.com

Other Notations and Presentations

Do all cancellations between
the two boundaries of deleted
term;

Set TMH in position;
end;

Case3:IF (exponent k>0mod2 and TMH=b) then
do;
CounterB = k - kmod2 +CounterB;;
Leave b**(kmod2) in place of b**k;
end;

Case4:IF (exponent k=0mod2 and TMH=b)'then
do;
CounterB = k +CounterB;
Remove b**k off tape;
Do all cancellations between

the two boundaries of deleted
term;

Set TMH in position;
end;

End Case;
Move TMH right;

end loop m345;
Comment: Final test.

174

www.manaraa.com

Other Notations and Presentations

IF ((CounterA=0 and CounterB=0 and Tape is empty) or
((CounterA/3) + (CounterB/2) =0))

THEN PRINT 'IDENTITY•;
ELSE PRINT •FALSE•?

END A3B2BRAID;

To see the process involved, note that counters A
and B record only the a**3 and b**2 chunks because they
can commute over the opposite generators, respectively.

Note that the modulo-residues will remain until a
nearby cancellation removes terms and starts a possible
chain reaction of cancellations.

Theorem: This algorithm operates in linear space
and time.

Proof: Probability(ab or ba at a given position
in the input string) = 1/2. So long strings of a 1s or
b's. are "very'1 rare (exponentially decreasing relative
•to length.) So the a**k's and b**k's occur linearly
often (relative to the average initial input length.)

175

www.manaraa.com

O th e r N o t a t i o n s and P r e s e n t a t i o n s

Probability of an a-string leaving a residue is
2/3. For b, it is 1/2. So, the TMH (as it moves
right) leaves a linearly long trail of residues. The
probability of cancellation at one point is 1/2 and 1/3
respectively (so that still keeps the trail linear.)
Finally, the • probability of chain-cancellations
decreases exponentially with respect to the number in
the chain (in fact, the alternating a's and b's gives
the chain exponential a form like
(1/2)**k*(2/3)**(k+constant) where k is the number of
ab alternations in the chain.) So, the trail is linear
space. The algorithm is linear time because
cancellation occurs only once for any symbol and
cancellation is refused linearly many time.

(QED)

176

www.manaraa.com

Birman-Hilden Algorithm

VIII.0 Birman-Hilden Algorithm

A new version of the Artin algorithm was under
developement, using a reduction based upon the
Birman-Hilden theorem (ie. adding a contracting rule
a(i)**2 to the TUPLE'S.) As noted in the chapter on the
Artin algorithm, this almost never occurs (ie. TUPLE
rarely has as square term.) This could probably be
shown not to ever occur; this would offer an insight
into an alternate proof for the Birman-Hilden
isomorphism result. Unfortunately, this cancels any
benefit from using this reduction in B(n+1) for n
greater than two. Therefore, the program was not
implemented.

Note: For B(3) significant savings do occur.

177

www.manaraa.com

References

Anisimov, A. V. [1973], "Group Languages",
Cybernetics, vol. 4, p594-601

Artin, Emil [1925], "Theorie der Zopfe"> Abhandl.
Math. Sem. Univ. Hamburg, vol. 4, p47-72,
(presentation of B(n) and solution of its1 WP)

Artin, E. [1947a], "Theory of Braids", Annals of
Math., vol; 48, plOl-126

Artin, E. [1947c], "Braids and Permutations", Annals
of Math., vol. 48, p643-649

Artin, E. [1950], "Theory of Braids", American
Scientist, vol. 38, pll2-119

Birman, Joan S. [1968], Braid Groups and Their
Relationship to Mapping Class Groups, Ph.D.
Thesis, New York Univ., 93pp., (diss. abstracts
29/03—B p.1085, order no. 86-13107)

Birman, J. S. [1968], "Automorphisms of the
fundamental group of a closed orientable
2-manifold", Proc. Amer. Math. Soc., vol. 21,
P351-354

Birman, J. S. [1969a], "On Braid Groups", Comm. Pure
and Applied Math., vol. 22, p41-72

Birman, J. S. [1969b], "Mapping Class Groups and
Their Relationship to Braid Groups", Comm. Pure
and Applied Math., vol. 22, p213-238

Birman, J. S. [1969c], "Non-Conjugate Braids can
Define Isotopic Knots.", Comm. Pure and Applied
Math.. vol. 22, p239-242

178

www.manaraa.com

References

Birman, J. [1975], Braids, Links, and Mapping Class
Groups, (Math. Studies Series 82), Princeton
University Press, Princeton, New Jersey,

Birman, J. [1981], Braid Groups, (manuscript (dated
November 8) and and conference held at the
C.U.N.Y. Graduate Center Computer Facility)

Birman, J. S. -and Hilden, H. M. [1971], "On the
mapping class group of closed surfaces as covering
spaces", in Annals of Math. Studies Series 66,
Princeton Univ. Press, p81-115

*Burau, W. [1932], "Uber Zopfinvarianten", Abh. Math.
Sem. Hamburg Univ., vol. 9, pll7-124

*Burau, W. [1934], "Kennzeichnung ' der
Schlauchverkettungen", Abh. Math. Sem. Hamburg
Univ., vol. 10, P285-297 .

*Burau, W. [1935], "Uber Verkettungsgruppen", Abh.
Math. Sem. Hamburg Univ. , vol. 11, pl71-178,
(important)

*Burau, W. [1936], "Uber zopfgruppen und gleicksinnig
verdrillte Verkettungen", Abh. Math. Semin.
Hamburg (or Hanisischen)Univ. , vol. 48, pl79-185,
(or vol. 11, pl71-178) (important paper on
braid-representation)

*Dehn, M. [1910], "Uber die Topologie des
dreidimensionalen Raumes", Math. Ann., vol. 69,
P137-168

*Dehn, M. [1911], "Uber unendliche diskontinuierliche
Gruppen" Math. Ann., vol. 71, pll6-144, (the
origin of WP, CP, and ISOP)

179

www.manaraa.com

References

*Dehn, M. [1912], "Transformation der Kurven auf
zweiseitigen Flaechen", Mathematische Annalen,
vol. 72, p413-421

*Dehn, H. [1914], "Die beiden Kleeblattschlingen",
Math. Ann., vol. 75, pl-12, (also check:
P402-413)

*Dehn, M. [1928], Uber die geistiqe Eigenart des
Mathematikers, Frankfurter Universitatsreden no.
27, Universitatsdruckerei Werner und Winter,
Frankfurt am Main, 25pp.

*Dehn, M. [1931], "Uber einige neuere Forschungen in
den Grundlagen der Geometrie", • Matematisk
Tideskrift B, No. 3-4

*Dehn, M. [1938], "Die gruppe der abbildungsklassen",
Acta Math., vol. 69, pl35-206

*Dehn, M. [1939], "Die Gruppe der Abbildungsklassen",
Acta Math., vol. 69, p. 135-206

*Dehn, Max and Heegaard, P. [1907], "Analysis Situs",
in Enzyklopadie der Mathematischen Wissenschaften,
vol. 3 (III AB3), pl53-220, Teubner,
Leipzig-Berlin

Dixon, John Douglas [1973], "Free Subgroups of Linear
Groups", p45-56 in Conf. on Group Theory (Univ.
of Wisconsin Parkside, Kenoska, Wisconsin)),
(Lecture Notes in Math. 319), Springer Verlag,
Berlin - N.Y.

Domanski, B. [1979], The Complexity of Decision
Problems in Group Theory, Ph.D. Thesis, Graduate
Center (C.U.N.Y), New York

180

www.manaraa.com

References

Domanski, B. [1982], "The Complexity of Two Decision
Problems for Free Groups", Houston Journal of
Math., vol. 8, no. 1, p29-38

*Dyck, Walther von [1882], "Gruppentheoretische Studien
(3 illustrations at end of vol.)", Math. Ann.,
vol. 20, pi—44, (unified all of group theory
under the auspices of abstract group theory; also
earliest records of free groups, relations, and
presentations)

*Dyck, Walther von [1883], "Gruppentheoretische Studien
II", Math. Ann.t vol. 22, p70-118

Dyer, Joan L. [1979a], "The Algebraic Braid Groups are
Torsion-Free; An Algebraic Proof", IBM T. J.
Watson Research Center (Research Report 7736
(33423) 6/15/79 Math.), 7pp.

Dyer, Joan L. [1979b], "Separating Conjugates in
Amalgamated Free and HNN Extensions", IBM T. J.
Watson Research Center (Research Report 7762
(33626) 7/17/79 Math.), 21pp.

Dyer, Joan L. and Grossman, Edna K. [1981], "The
Automorphisms of Braid Groups", Amer. Journal of
Math., vol. 103, no. 6, pll61-H69

Dyer, Joan L., Grossman, Edna K., and Formanek, E.
• [1981], "Automorphism Groups of Free Groups", IBM

T. J. Watson Research Center (Research Report
8701 (38025) 2/17/81 Math.), 10pp.

Feller, W. [-1968], An Introduction to Probability
Theory and its Applications, (2 vol.), Wiley, New
York

181

www.manaraa.com

References

Garside, F. A. [1965], The Theory of Knots and
Associated Problems, D. Phil. Thesis (Nov.
1965), Oxford University (Corpus Christi College),
(ASLIB Index to Theses 1965/66 p.67 1333), 97pp.,
(Solves Conjugacy Problem for braid groups)

Garside, F. A. [1969], "The braid group and other
groups", Quart. J. Math. Oxford, vol. 20,
p235-2S4, (compact version of thesis)

Gassner, Betty Jane [1957], On Braid Groups, Ph.D.
Thesis, New York Univ., 42pp., (diss. abstracts
33/04-B p.1664, order no. 72-24487)

Gassner, Betty Jane [1961], "On Braid Groups", Abh.
Math. Sem. Hamburg Univ., vol. 25, plo-22,
(condensation of her thesis)

Gorin, E. A. and Lin, V. Ja [1969], "Algebraic
Equations with Continuous Coefficients and Some
Problems in the- Algebraic Theory of Braids",
(English Translation), Math. Sobomik, vol. 7,
no. 4, p569-596

Harrison, M. A. [1978], Introduction to Formal
Language Theory, Addison-Wesley, Reading, Mass.,
608pp.

Harrison, N. [1972], "Real length functions in
groups", Trans. Aroer. Math. Soc., vol. 174,
p77-106

Hopcroft, J. and Ullman, J. [1969], Formal Languages
and Their Relation to Automata, Addison-Wesley,
Reading, Mass., 242pp.

182

www.manaraa.com

References

James, L. O., Luginbuhl, E., and Thomas, R. S. D.
[1971], "On notations for non-permuting braids",
in Proc. 25th Summer Meeting Canadian Math.
Congress at Thunder Bay, Thunder Bay, Ontario,
pages 457-470

Kesten, H. [1959], "Symmetric random walks on groups",
Trans. Amer. Math. Soc., vol. 92, p336-354

Kesten, H. and Spitzer, F. [1965], "Random walks on
countably infinite Abelian groups", Acta Math.,
vol. 114, p237-259

Lipschutz, Seymour S. [1960], On the Braid Group,
Ph.D. Thesis, New York Univ., 28pp., (diss.
abstracts 21/01 p.202, order no. 60-02296)

Lipschutz, Seymour [1961], "On a Finite Representation
of the Braid Group", Arch. Math., vol. 12, p7-12

Lipschutz, Seymour [1963], "Note on a paper by Shepperd
on the braid group", Proc. Amer. Math. Soc.,
vol. 14, p225—227

Lipschutz, Seymour [1964], "An Extension of
Greendlinger's Results on the Word Problem", Proc.
Amer. Math. Soc., vol. 15, p37-43

*Lipton, R. [1975], "Probabilistic Algorithms for
Group-Theoretic Problems", SIGSAM Bulletin,
(A.C.M. Publication), Issue 46, p8

Lipton, Richard J. and Zalcstein, Yechezkel [1977],
"Word Problems Solvable' in Log-Space", Journal
A.C.M., vol. 24, no. 3, p522-526, (WP(free
groups) solvable in logspace and ref. to
Cannonito1 s Grzegorzck work)

183

www.manaraa.com

References

Lipton, Richard J. and Zalcstein, Yechezkel [1978],
•'Probabilistic algorithms for group-theoretic
problems", A.C.M. SIGSAM Bull., vol. 12, no. 2,
p8—9

Liu, C. L. [1968], Introduction to Combinatorial
Mathematics, McGraw-Hill, New York

Luginbuhl, E. [1973], The Computer Implementation of
Braid Algorithms, M.Sc. Thesis, Univ. of
Manitoba, 129pp.

Magnus, W. [1954], "On the exponential solution of
differential equations for a linear operator",
Comm. Pure and Appl. Math., vol. 7, p649-673

Magnus, W. [1972], "Braids and Riemann surfaces",
Comm. Pure Appl. Math., vol. 25, pl51-161

Magnus, W. [1974a], "Braid groups: A survey", Proc.
2nd Intemat. Conf. on the Theory of Groups,
(Lect. Notes in Math. 372), Springer-Verlag, New
York, pages 463-487

Magnus, W. [1978], "Max Dehn", Math. Intelligencer,
vol. 1, pl32-142, (Dehn's 100th birthday
rememberence)

Magnus, W., Karrass, A., and Solitar, D.
[1966;reprinted 1976], Combinatorial Group Theory:
Presentations of Groups in Terms of Generators and
Relations, Dover, New York, 444pp.

*Magnus, W. and Moufang, R. [1954], "Max Dehn zum
Gedachtnis", Math. Ann., vol. 127, 215-227,
(Obituary of Max Dehn, includes a list of complete
works)

184

www.manaraa.com

References

Magnus, W. and Peluso, A. [1967], "On Knot Groups",
Comm. Pure and Appl. Math., vol. 20, p749-770

Magnus, Wilhelm and Tretkoff, Carol [1980],
"Representations of automorphism groups of free
groups", in Adjan, Boone, and Higman (ed.) [1980],
Word Problems II, pages 255-259

Makanin, G. S. [1968], "The conjugacy problem in the
braid group", Doklady Akad. Nauk. SSSR, vol.
182, p495-496

*Markov, A. A. [1936], "Uber fie freie Aquivalenz der
geschlossen Zopfe", Rec. Math. Moscow, vol. 1,
p73-78, (Markov operations on braids)

*Markov, A. [1945], Foundations of the Algebraic
. Theory of Braids, (Trudy Math. Inst. Steklov
vol. 16), 55pp., (Russian paper with English
summary), (Braids were called tresses then.), (MR
8 pl31)

Moran, S. [1980], "Matrix Representations for the
Braid Group B(4)", Arch. .Math., vol. 34,
P496-501

Moran, Siegfried [1983], The Mathematical Theory of
Knots and Braids, (North-Holland Math. Studies
vol. 82), Elsevier Sci. Pub. Co., New York,

. 296pp., (ISBN 0-444-86714-7)

Muller, David E. and Schupp, P. E. [1983], "Groups,
the theory of ends, and context free languages",
Jour. Comput. System Sci., vol. 26, no. 3,
P295-310, (MR 84k:20016)

185

www.manaraa.com

References

Renyi, A. [1970], Foundations of Probability,
Holden-Day, San Francisco, Calif.

Spitzer, F. [1976], Principles of Random Walks, (Grad.
Texts in Math. 34), Springer-Verlag, New York

Squier, Craig C. [1984], "The Burau Representation is
Unitary", Proc. Amer. Math. Soc., vol. 90, no.
2, pl99-202

Stillwell, J. [1980], Classical Topology and
Combinatorial Group Theory, (Graduate Texts in
Mathematics: Volume 72), Springer-Verlag, New
York - Heidelberg - Berlin, 301 pp.

Thomas, R. S. D. [1971], "Computed Topological
Equivalence of Partially Closed Braids", in Proc.
of the Twenty-fifth Summer Meeting of the Canadian
Math. Congress (Lakehead U m v ., Thunder Bay,
Ontario, June 1971), Lakehead Univ., Thunder Bay,
Ontario, p564-584, (MR 49 3887)

Thomas, R. S. D. [1971], "An Algorithm for Combing
Braids", in Proc. Second Louisiana Conference on
Combinatorics and Graph Theory, Louisiana State
Univ., Baton Rouge, La., p517-532, (MR 50 5780)

Thomas, R. S. D. [1972], Note on Isotopy of Closed
Braids, Science Report no. 56, Univ. of Manitoba

Thomas, R. S. • D. [1972], "Closed and Partially
Closed Braids", in Proc. Third Southeastern
Conference on Combinatorics, Graph Theory, and
Computing. (Florida Atlantic Univ., Roca Baton,
Fla.), Florida Atlantic Univ., Roca Baton, Fla.,
P447-450, (MR 49 11496)

186

www.manaraa.com

References

Thomas, R. S. D. [1974], "Partially Closed Braids",
Canadian Bull. Math., vol. 17, p99-107

Thomas, R. S. D. [1974], "The Structure of
Fundamental Braids", Quarterly Journal of Math.
Oxford. Series 2, vol. 26, no. 103 p283-288

Thomas, R. S. D., James, L. O., and Luginbuhl, E.
[1971], "On Notations for Non-Permuting Braids",
in Proc. of the Twenty-fifth Summer Meeting of
the Canadian Math. Congress (Lakehead Univ.,
Thunder Bay. Ontario. 1971). p457-470, Lakehead
Univ., Thunder Bay, Ontario, (MR 50 9044)

Thomas, R. S. D. and Luginbuhl, E. [1973],. "A Table
of Knots as Closed Braids", in Proc. Southeastern
Conference on Combinatorics. Graph Theory, and
Computing fFlorida Atlantic Univ., Roca Baton,
Fla.). Florida Atlantic Univ., Roca Baton, Fla.,
P423-444, (MR 50 5776), reprinted in Utilas
Math.,(Winnipeg, Manitoba) vol. 13,

Thomas, R. S. D. and Paley, B. T. [1974],
"Garside's Braid-Conjugacy Solution Implemented",
Utilas Mathematica. vol. 6, p321-335, (Published
by: Utilas Math. Pub. Inc., P. 0. Box 7,
University Centre, Univ. of Manitoba, Winnipeg,
Manitoba, Canada R3T 2N2), (ISSN: 0315-3681),
(MR 50 13208), (Algorithm is in Paley [1974],
his thesis)

Tits, J. [1972], "Free subgroups in linear groups",
Journal of Algebra. vol. 20, p250-270

187

